Yachaykusun
Lessons on climate change from the Andes
Yachaykusun

Lessons on climate change from the Andes
INDEX

Preliminary words ... 4
 Ministry of the Environment 4
 Swiss Agency for Development and Cooperation (SDC) 5
Prologue .. 7
If the climate goes crazy, can we adapt ourselves? 9
The man who looks at the sky 16
Qochas .. 24
 “Ununchista uywasun, we raise water!” 26
 A qocha as a prize .. 36
 Water for everyone .. 42
Natural pastures ... 44
 The guardians of the pastures 46
When vegetables are welcome 56
 “Green gold” to change lives 58
 Tula’s corner .. 60
 The healthiest farm plot ... 66
Food Security .. 68
 Lettuce on the peak ... 72
 Songs for a pregnant woman 80
Some grand houses .. 88
 Ricandina’s motor .. 90
 The future fits on a map ... 98

Education .. 103
 The future of change ... 104
Technical files .. 112
 Qocha, system to store surface and sub-surface water 114
 Rotational grazing and temporary closure of grazing areas 116
 Agroforestry ... 118
 Organic fertilizers .. 120
 Local climate monitoring ... 122
 Promoting early childhood development 124
 Vegetable production in homestead gardens 126
 Raising small animals ... 128
 Healthy homes .. 130
 Farmer’s competition ... 132
 Training program on climate change for men and women community leaders 134
 Competition between education institutions 136
If the clouds .. 138
Interview: “Adaptation requires organized action between society and the State” 150
The Ministry of the Environment considers it an immense privilege to present the book "Yachaykusun: Lessons on climate change from the Andes", which shares the experiences generated through the implementation of practices that strengthen resilience under conditions of a changing climate. The main players in this story are rural peasant families and communities that live in poverty in the highland watersheds of Huacrahuacho (Cusco region) and Mollebamba (Apurimac region).

The Climate Change Adaptation Program - PACCPeru supported these actions in its first phase (2009-2013), which was based on two thematic axes. The first axis corresponds to practices to manage the ecosystem and natural resources to improve water yields and maintain livelihoods. The second axis corresponds to practices that focus on the families’ well-being and on protecting the most vulnerable population and children in particular.

One of the main challenges of climate change entails mobilizing and sharing experiences and knowledge. Along these lines, the stories, photographs and technical files that are presented in the publication, are a source of specific information about concrete actions that should be fostered to strengthen the resilience and adaptive capacity of rural families and communities that live in the ecosystems of the Andean highlands.

We hope that this publication motivates and inspires others to replicate these practices, beginning with actions to promote initiatives at the public entity, private and civil society levels so that rural highland communities that live in poverty can improve their quality of life and are better prepared to face the challenges that climate change adds to an already difficult daily existence.

Manuel Pulgar Vidal
Ministry of the Environment

Yuka N. Greller
Head of Global Program Climate Change
Swiss Agency for Development and Cooperation SDC

Hans-Ruedi Bortis
Ambassador
Embassy of Switzerland in Peru
WE HUMANS ADAPT WHEN WE ADJUST TO CONDITIONS IN OUR ENVIRONMENT. If climate changes and its effects are here to stay, there is no other choice: to adapt and live better. For this reason, in 2009 the Climate Change Adaptation Program – PACCPeru was born, in the watersheds of Huacrahuacho, Cusco and Mollebamba, Apurímac.

The stories that make up this book come from experiences generated during the program’s first phase—which ended in April 2013—, which was implemented jointly with regional and local institutions, organizations, and community members from both watersheds. These men and women are the main players. During the first days of September 2014, we visited them to hear their voices.

On the pages that follow, we discover how much the life of Silverio, a peasant farmer, has changed since he began to manage a meteorological station.

Bernabé and Marcelina, and also Américo, will show us what sowing and harvesting water in their family yachas entails. We will also learn about this when looking at other lakes, such as the ones built by the community of Samuel and Guillermo on a pampa where residents used to play football, and the one by the community of Eleuterio, in a highly eroded area.

We will accompany community leaders Wilfredo and Renzo, and Pio, Demetrio, Sózimo and Nemesio on their visit to two large natural pastures, which have been temporarily enclosed to ensure their recovery.

We will see how cultivating grass such as alfalfa and practicing agroforestry has changed the lives of Belinda and Rufo. Or how Tula and Cayetano raise guinea pigs, next to their vegetable garden under sprinkler irrigation. Or the virtues of Antonio and Efrosina’s plot, which is nurtured with organic fertilizer.

We will climb to the high lands of the alpaca farmers to see how Agustin and Magdalena plant lettuce in their vegetable garden with a greenhouse. And we will see how their daughters Kelly and Mary learn about the benefits of vegetables in a garden at their school, which is just like the one they have at home, and how the classroom is heated in the middle of the puna.

Victoria and Yolanda, two community leaders, accompany us on our visit to an early stimulation center where the children learn through play and specialists monitor their diet and growth. Not far from there, Jenifer and Elio (another community leader) will introduce us to their young children, Estefan and Edu, who love poetry, and we will see that childhood stimulation is not just a theory.

We will visit the healthy home of Ricardina, which is an excellent example of adaptation to climate change. And we will also see Deyry, a brilliant fourteen year old girl who is a member of her school’s club for ecologists.

And we will travel to the school that Carlos directs, where the children Clíberht and Julio are environmental brigadiers and lead actions, along with forty-six other students, to reduce-reuse-recycle waste.

With all these people, the future of adaptation looks promising.
If the climate goes crazy, can we adapt ourselves?

More heat. More rain. Less rain. More glacier melt. More water scarcity. The effects of climate change are here to stay. The experts have no doubt that human beings have altered the composition of the atmosphere through greenhouse gas emissions. This has led to changes in climate over a prolonged period and all this adds to the natural variability. The scenarios for this century are pessimistic.
PERÚ, a mega diverse country in terms of climate—with 27 of the world’s 32 climates—is one of the countries that is most vulnerable to the effects of climate change. The temperature is expected to rise 1.6 °C degrees in the Andean highlands by 2030. Rains will occur out of season and will be heavier and more concentrated. Within eleven years, glaciers below 5,000 meters might have completely disappeared. And in another 40 years, it is estimated that we will have only 60% of the water that we have today.

To address future scenarios, the Climate Change Adaptation Program-PACCPerú, was established in 2009. This is a bilateral cooperation initiative between the Ministry of the Environment (MINAM) and the Swiss Agency for Development and Cooperation (SDC), given life jointly with numerous organizations and institutions. “We began our work with trying to answer some basic questions,” explains Lenkiza Angulo, the program’s national coordinator. One: “Which conditions will the inhabitants need to adapt to and what needs to be adjusted?” Two: “Which vulnerabilities do they have given these changes and how can they be reduced?” Three: “Which actions can help rural populations adapt?” And four: “Which initiatives, which are already underway, can serve as a solid base for adaptation to climate change?”

Two zones of the southern Andes of Peru were chosen to participate in this program: the watersheds of the Mollebamba river, in Apurímac, and of the Huacrahuacho river, in Cusco.

The selection—which was made with regional authorities—was neither quick nor simple. First, fifteen potential watersheds in Cusco and another six in Apurímac were identified. The most vulnerable population. They are peasant farm families that engage in subsistence agriculture and livestock raising for local markets.
PACC operates in the rural Andes, where the most vulnerable populations live: peasant farmers that engage in subsistence agriculture and livestock raising for local commerce.

Of the initial number, six finalists were chosen (three per department). After the last selection process, two remained.

The Mollebamba watershed is home to five peasant communities of the district of Juan Espinosa Medrano. The larger part of its territory is in the high zone, above 4,000 meters. The low area, which is between 2,950 and 3,500 meters, covers barely 3.6% of the territory but is home to the majority of the population, which is dispersed across four of the five communities.

The Huacrahuacho watershed covers a territory that is half the size of Mollebamba but nonetheless has more communities: five correspond to the district of Checca and eleven to Konturkanki. Its territory is at a higher altitude: between 3,750 and 4,700 meters.

PACC operates in the rural Andes, whose residents constitute our most vulnerable population: people who live in conditions of poverty and whose livelihoods are based on primary activities that depend on natural resources, which have been compromised by the effects of climate change. These are peasant families that live off subsistence farming and livestock, which they sell in local markets.

The main players in this program are the eight thousand residents of the watersheds. They have inherited a system of ancestral knowledge and traditions that include observing the constellation Suchu to predict the onset of the rainy season to organize their agricultural calendar, as well as cultivating plants that “call” the water. Although the concept of climate change does not exist in their language—in Quechua there is no term to define it—“they are familiar with the issue,” emphasizes Lenkiza Angulo. “This belongs to their day to day life, and is part of the observations that the peasant farmers use to act on their environment.”

Marcelina Huilca, who is from the Hanansaya Ccollana community, says: “It isn’t like it was before. It rains at anytime and frosts at anytime.” Wilfredo Mancilla, from Mollebamba, says: “There is drought and some springs are disappearing.” Samuel Huarca, from Pucacancha, says: “There has been a torrential rain, afterwards a veranillo, followed by a drought, a frost, and everything has wilted.” Guillermo Taparaco, who is also from Pucacancha: “We have never seen hail in August. This is climate change.”

Studies confirm the perceptions of the community members. In both watersheds, a change was detected in the rainfall regime and precipitation has dropped; minimum temperatures have descended while maximum temperatures have risen; frost and hail have become more frequent; and the water flow of springs and rivers has fallen. The consequences have been significant: for example, less agricultural production due to drought conditions; delay in sowing and harvesting periods; native plant

Vulnerable populations. The extreme events produced by the effects of climate change require strengthening the capacities to care for and protect children under the age of five.

inherited a system of ancestral knowledge and traditions that include observing the constellation Suchu to predict the onset of the rainy season to organize their agricultural calendar, as well as cultivating plants that “call” the water. Although the concept of climate change does not exist in their language—in Quechua there is no term to define it—“they are familiar with the issue,” emphasizes Lenkiza Angulo. “This belongs to their day to day life, and is part of the observations that the peasant farmers use to act on their environment.”

Marcelina Huilca, who is from the Hanansaya Ccollana community, says: “It isn’t like it was before. It rains at anytime and frosts at anytime.” Wilfredo Mancilla, from Mollebamba, says: “There is drought and some springs are disappearing.” Samuel Huarca, from Pucacancha, says: “There has been a torrential rain, afterwards a veranillo, followed by a drought, a frost, and everything has wilted.” Guillermo Taparaco, who is also from Pucacancha: “We have never seen hail in August. This is climate change.”

Studies confirm the perceptions of the community members. In both watersheds, a change was detected in the rainfall regime and precipitation has dropped; minimum temperatures have descended while maximum temperatures have risen; frost and hail have become more frequent; and the water flow of springs and rivers has fallen. The consequences have been significant: for example, less agricultural production due to drought conditions; delay in sowing and harvesting periods; native plant

Vulnerable populations. The extreme events produced by the effects of climate change require strengthening the capacities to care for and protect children under the age of five.

inherited a system of ancestral knowledge and traditions that include observing the constellation Suchu to predict the onset of the rainy season to organize their agricultural calendar, as well as cultivating plants that “call” the water. Although the concept of climate change does not exist in their language—in Quechua there is no term to define it—“they are familiar with the issue,” emphasizes Lenkiza Angulo. “This belongs to their day to day life, and is part of the observations that the peasant farmers use to act on their environment.”

Marcelina Huilca, who is from the Hanansaya Ccollana community, says: “It isn’t like it was before. It rains at anytime and frosts at anytime.” Wilfredo Mancilla, from Mollebamba, says: “There is drought and some springs are disappearing.” Samuel Huarca, from Pucacancha, says: “There has been a torrential rain, afterwards a veranillo, followed by a drought, a frost, and everything has wilted.” Guillermo Taparaco, who is also from Pucacancha: “We have never seen hail in August. This is climate change.”

Studies confirm the perceptions of the community members. In both watersheds, a change was detected in the rainfall regime and precipitation has dropped; minimum temperatures have descended while maximum temperatures have risen; frost and hail have become more frequent; and the water flow of springs and rivers has fallen. The consequences have been significant: for example, less agricultural production due to drought conditions; delay in sowing and harvesting periods; native plant

Vulnerable populations. The extreme events produced by the effects of climate change require strengthening the capacities to care for and protect children under the age of five.
The program also encouraged the use of sprinkler irrigation, the improvement of agricultural production on family lots with agroforestry practices—the combination of trees and crops—; the production of organic fertilizer; and the cultivation of fodder grasses, to improve cattle production and compensate for a lack of fodder during the dry season.

The second group of measures, related to “family well being,” are directed, for example, at young children, who are the most vulnerable to climate change. In this context, the program has promoted early stimulation of children who are between zero and five years of age; encouraged breast feeding; and the monitoring of the growth and development of the youngest members of the community.

* To improve adaptation, this program has implemented two blocks of measures in collaboration with the community members. The first, the “green axis,” has to do with improving natural resources. Here, water is essential. “How can we improve water availability during periods when it is most needed?” asks Victor Bustinza, deputy coordinator of PACC. The answer lies in building simple qochas or lakes to recharge the aquifers (sowing) and store the water (harvesting).

To improve adaptation, this program has implemented two blocks of measures in collaboration with the community members. The first, the “green axis,” has to do with improving natural resources. Here, water is essential. “How can we improve water availability during periods when it is most needed?” asks Victor Bustinza, deputy coordinator of PACC. The answer lies in building simple qochas or lakes to recharge the aquifers (sowing) and store the water (harvesting).

The other major initiative to recover water-related capacities has entailed managing natural pastures with enclosures. “The pasture acts like a sponge and as long as it is green, it will have the capacity to absorb, infiltrate and recharge water,” says Lenkiza Angulo. To strengthen this function, degraded areas have been afforested with native trees such as qolle, qishuar, queñua and chachacoma, and pine.

80% of the families participated in the peasant farmer competitions.

276 family vegetable gardens in Kunturkanki.

14 early stimulation centers in Huacrahuacho.

6.4% decrease in chronic childhood malnutrition in Kunturkanki.

To improve adaptation, this program has implemented two blocks of measures in collaboration with the community members. The first, the “green axis,” has to do with improving natural resources. Here, water is essential. “How can we improve water availability during periods when it is most needed?” asks Victor Bustinza, deputy coordinator of PACC. The answer lies in building simple qochas or lakes to recharge the aquifers (sowing) and store the water (harvesting).

The other major initiative to recover water-related capacities has entailed managing natural pastures with enclosures. “The pasture acts like a sponge and as long as it is green, it will have the capacity to absorb, infiltrate and recharge water,” says Lenkiza Angulo. To strengthen this function, degraded areas have been afforested with native trees such as qolle, qishuar, queñua and chachacoma, and pine.

80% of the families participated in the peasant farmer competitions.

276 family vegetable gardens in Kunturkanki.

14 early stimulation centers in Huacrahuacho.

6.4% decrease in chronic childhood malnutrition in Kunturkanki.

The program also encouraged the use of sprinkler irrigation, the improvement of agricultural production on family lots with agroforestry practices—the combination of trees and crops—; the production of organic fertilizer; and the cultivation of fodder grasses, to improve cattle production and compensate for a lack of fodder during the dry season.

The second group of measures, related to “family well being,” are directed, for example, at young children, who are the most vulnerable to climate change. In this context, the program has promoted early stimulation of children who are between zero and five years of age; encouraged breast feeding; and the monitoring of the growth and development of the youngest members of the community.

This program has also sought to strengthen family health through nutritious diets, and has promoted food security by installing homestead gardens to grow vegetables and by encouraging families to raise small animals, such as guinea pigs. Efforts have also been made to convert old, one-room dwellings into larger, more organized and healthy homes. “Housing is a good starting point from which people can adapt to climate change,” explains Victor Bustinza. “They often say: ‘If I changed this, I can change other things.’ When we started, there was no recipe for ‘this is how we are going to adapt to climate change’. We have learned to do it with the support of many actors. It is a social construct.”

425 families improved their homes in Huacrahuacho.

102 participants in the Program for Leaders in Climate Change.
The man who looks at the sky leaves his home and looks at the sky. If the wind is coming from the west and the clouds are black, it will rain. If the wind is coming from the south, a frost may occur. He crosses himself and says goodbye to his wife and two small children.

The man who looks at the sky walks briskly for a half an hour. This is how long it takes to reach the center of his community, Pumathalla, in the Huacrahuacho watershed in Cusco, at 3,900 meters above sea level. In this area there is a community meeting place; a veterinary care center for artificial insemination; Primary Education Institution 56163; an early-years school; a small church that has been painted maroon; a sign that says: “Christian Community” and a miniscule white steeple that is separated from the nave; and a Support Services Center for Rural Habitats, or a community Tambo. And there is a meteorological station. This is the destination of the man who looks at the sky.

The Climate Change Adaptation Program (PACCPeru) set up shop in this small community of 260 families, whose homes are scattered among different land parcels, in April 2011. PACC also set up a station in the Mollebamba watershed in Apurimac. This station is automatic, whereas the station in Huacrahuacho must be read manually. The man who looks at the sky is in charge of writing down data for each day. His name is Silverio Choquenaira and he is 50 years old.

Before this program began, Silverio’s life was like this: he lived in an adobe house with a straw...
Apu Laramani, you are sitting on your gray poncho (fog). We, your children, feel happiness in our hearts when we see you this way!

Apu Laramani has begun to relieve itself (rain) so that our mother earth can bring forth fruit so that we, her children, can feed ourselves.

The clouds, with tears in their eyes (rain), come from the sea and the lakes so that our towns can be green.
The meteorological station is simple. It contains four thermometers that are placed in a box that is far off the ground. Residents must stand on a rock to take readings. The station includes a rain gauge, an anemometer, and an evaporation tank.

Silverio had no idea what a wet temperature was and had never worked a rain gauge. Through an agreement with the National Meteorology and Hydrology Service (Senamhi), the families of four community leaders were trained to monitor the meteorological station. The families of Silverio and Rene were one of those chosen to perform this duty. With this knowledge and his recent experience in tow, Silverio Choque, husband to Rene and father to Hilda, Fredy, and Santos, turned to his ancestral knowledge he learned from his grandparents: “Wishay wayta waytan tamachay qamun. And when the wind comes from below, it will rain. Puna wayta qamun. Rain winds are coming.”

With this knowledge and his recent experience in tow, Silverio Choque applied for InterCLIMA, a climate change meeting, in Cusco and Lima. And he was proud to attend, dressed in traditional garb from Canas. You could just imagine him climbing Oqquesopa, the small hill that reigns over Pumathalla, to be closer to the constellations to predict the weather.

With his embroidered orange jacket, cap with silver tassels, white handkerchief on his shoulders, a poncho tied at the waist, black cloth pants with white booties and his yankees, he told politicians and experts: "Don't forget about the peasant farmers. People may have a lot of money, but can they eat money? No! The peasant farmers provide them food. Food is necessary for people's progress." And this man, the peasant farmer Silverio, husband to Rene and father to Hilda, Fredy, Santos, and Hilda, spoke to them about the need to protect their traditions. For example, paying the apus like the Laramasis, where—be said—the water of Kunturkanki comes from. And he explained to them that, when he was young, that powerful hill was covered by “a white poncho” of snow. But not anymore. And he warned them: “Without water there is no life.” Silverio has spoken.

Silverio— or Julian, when it’s his turn— takes data three times a day: at seven in the morning, one in the afternoon, at a seven at night. If they were to calculate, they would find that it takes a total of four hours to go to the station, gather information, and return to their homes. If Silverio is busy, his wife Rene. And if both are busy, one of their children Santos (15 years old) or Uber (12 years old) is in charge. The other two children, Hilda (20) and Fredy (18) can’t help because they are studying in Sicuani, which is one hour and a quarter by car. Regardless of who ends up going —“I usually overlook everything because I have more responsibility,” says Silverio—that person takes down the temperature, wind direction and speed as well as data on precipitation and evapotranspiration, which is necessary to determine water loss from the soil and vegetation cover.

“Don’t forget about the peasant farmers. People may have a lot of money, but can they eat money? No! The peasant farmers provide them food. Food is necessary for people’s progress.” And this man, the peasant farmer Silverio, husband to Rene and father to Hilda, Fredy, Santos, and Hilda, spoke to them about the need to protect their traditions. For example, paying the apus like the Laramasis, where—be said—the water of Kunturkanki comes from. And he explained to them that, when he was young, that powerful hill was covered by “a white poncho” of snow. But not anymore. And he warned them: “Without water there is no life.” Silverio has spoken.
Water is and will be a key factor in adaptation to climate change. This is even more so in regions such as Apurimac and Cusco, which will suffer from water shortages in the near future. The creation of simple reservoirs, which requires little investment in material and manual labor, allows families and communities to store water and recharge the aquifers.
HEN ROLANDO HUACARPUMA, a member of the village community, heard about sowing water for the first time, he said: “How are we going to sow water?” And when they told him that water could also be harvested, he responded: “Harvest, we harvest potatoes.” Eleuterio Huaycho had also never heard anything about this. His wife, Brigida Consone, and the son of his cousin, Roger Huaycho, had never heard about this either. In fact, none of the four members of the Quillihuara community had ever heard such a thing. It was the same story for Americo Taparaco, from Oquebamba, and Bernabe Huarca, from Hanansaya Ccollana, all inhabitants of the Huacrahuacho watershed in Cusco. Agustin Lupa and his cousin Amilcar Aroni, from the community of Santa Rosa in the Mellebamba watershed in Apurimac, were new to this concept as well.

They all knew about qochas or lakes, which have been part of the traditional knowledge of peasant farmers in the highlands for centuries. When the Climate Change Adaptation Program – PACCPeru arrived, it offered the farmers a special way of understanding their use. In this case, qochas are water reservoirs —the experts call them “small rustic reservoirs”—that were built on natural depressions in the landscape. These structures are simple: you only need a dam made of compacted soil and rocks and the structure doesn’t have to be too high —between eighty centimeters and a meter—and with this, it is possible to gather and store rain water or water that comes from a spring. These reservoirs are effective: they don’t just gather water, they also facilitate infiltration and recharge the aquifers. And they are cheap: the budget required is up to one thousand times less than that needed to build other artificial qochas.

"¡UNUNCHISTA UYWASUN! ¡WE RAISE WATER!"

By building qochas for sowing and harvesting water, we can attenuate the effects of future droughts.
The scenarios that we will see in the region will be very critical in coming years,” warns Victor Bustina, assistant coordinator of PACC. “The temperature is going to rise and the rains will diminish in the months that we need water the most. Things are already complicated: the onset of the rainy season is delayed from September to November or even December. And if it does not rain during sowing, how will rain-fed agriculture, which accounts for 80% of all farming, survive?”

The first qocha that this program supported was in Quillihuara, in the district of Cusco, Cusco, in early 2011. At the beginning, it was not easy. At the communal assembly held on the 10th day of every third month, the people would not consent to their land being taken. The majority of the villagers worked on this effort. Eleuterio, and his wife Brigida, who is 38 years old and mother to seven children, joined the effort; along with Roger, who is 23 and the son of Eleuterio’s cousin, who lives on a plot a few hundred meters below with his young son Guido since he widowed three and a half years earlier; and Rolando, 40 years old, a villager who received training and directed construction, fencing and forestation work.

This was how qocha Quellopampa was born, one of four that were built in the area. And in only two years, the effects were evident: the fenced land, in the direction of a wetland next to which his two horses graze—are kept wet by the qocha. We think that the moisture filters through, which accounts for 80% of all farming, survive?

“We are seeing that climate change is drying everything up here, or on the coast, in most of the world. This is why I need to make more qochas”, he says. Now, thanks to the liquid that is stored from December to July, his livestock can graze closer to his plot because grass has grown again; the springs that are down the slope have more water. It was even possible to take water to a water tap he installed next to his adobe and ichu house. Americo Taparaco imagines the future where his qocha is protected by native trees. He will plant them soon. “What is the future going to be like?”, Eleuterio Huaycho asks himself from Quillihuara, a few kilometers away. “Water. Where there is water, we can maintain our animals and raise crops. It is poetic: it was necessary to build more of these lakes. To do this, PACC organized qocha competitions with a motto that was as pictorial as it was poetic: “Miazza, mbuatun, we raise water!”. The results were surprising: in two years 146 reservoirs were built in the Huacrahuanacho watershed —155 for families and 11 for communal use, all of different sizes and volumes; some of temporary use and others permanent—and 48 more in the Mellebamba watershed, all of which were for family use.

Life in Sik’anca, the sector of Quechabamba where Americo was born and raised along with his thirteen brothers, is not easy. The life of Americo Taparaco, 33 years old, was not aware of the importance of qochas in reducing the impact of climate change. He heard about it on the radio, one day at breakfast or over dinner, he is not really sure. His wife Leonisia Taparaco, 28 years old, his son Jesus Manuel, 8 years old, and his little sister Belen, 12, were with him. “During that program they talked about sowing water. And I said to myself: Why don’t they come here?” Later, courses were given and experts provided on-site orientation and Americo eventually decided to expand and strengthens the dam of a small lake that he had created when he was just a teenager. It took eight hours over a twenty-day period to improve it.

Eleuterio Huaycho, who is now 40. At that time he was just another member of the village community. Today, he is the community’s president.

No one wanted to offer their land to build a lake. Eleuterio offered his plot in the Janccoaqque sector, although the community’s president. “We are seeing that climate change is drying everything up here, or on the coast, in most of the world. This is why I need to make more qochas”, he says. Now, thanks to the liquid that is stored from December to July, his livestock can graze closer to his plot because grass has grown again; the springs that are down the slope have more water. It was even possible to take water to a water tap he installed next to his adobe and ichu house. Americo Taparaco imagines the future where his qocha is protected by native trees. He will plant them soon. “What is the future going to be like?”, Eleuterio Huaycho asks himself from Quillihuara, a few kilometers away. “Water. Where there is water, we can maintain our animals and make some grasses grow. Water is important. There is nothing else.”
Necessary maintenance.

Community members Brígida Consone and Clemente Choquipuma work on the reinforcement of the dam of a qocha in Quillihuara. The positive effects of this lake are evident in land below, where small springs have been recovered.
A bird's eye view.

To improve water regulation services throughout the territory, it is necessary to ensure that water resources at the head of watersheds are protected, and facilitate infiltration and aquifer recharge.
Under the Laramani.

Community member Américo Taparaco has built a qocha at the foot of an apu that protects Oquebamba. Moisture has helped recover natural grazing land and his cattle can now graze closer to his home.

The strength of leaders.

Eleuterio Huaycho (left), president of the community of Quillihuara, convinced the rest of the community that it was necessary to build a collective qocha. Rolando Huacarpuma (right) supervised its construction.
A qocha as a prize

Bernabe and Marcelina had a small lake on their plot. In 2011, they decided to take a chance on improving it, like others, and increased its capacity. Their effort is an example of success.

Bernabe Huacca is a quiet man who smiles from time to time by pursing together his lips and slanting his eyes below his grey hat. To reach his qocha from his house, he has to walk about ten minutes—five at a quick pace—climbing and going down a couple of hills. Bernabe is 69 years old. His wife, Marcelina Huilca, is 62. They live in the community of Hanansaya Ccollana, Cusco, at 4,630 meters above sea level where the only thing that grows is natural grass.

Marcelina arrives at the edge of the lake wearing a maroon hat and a polar jacket. —We can’t grow anything here. This is why my children left—she laments.

She is carrying two small buckets. She is going to milk her cows. They have eight. And twenty-nine alpacas. And thirty-three sheep. She is accompanied by her grandson, Brian, who is 11 and has come to visit them from Langui and help them with their chores. They are followed by two dogs: one black, Renon, and the other brown, named Rocky.

The qocha is large but is only for the family’s use. It is dark in color, perhaps due to abundant aquatic vegetation. Its name in Quechua, Yanaqocha, means “black lake.” It is a micro-reservoir for mixed use, for sowing and harvesting; this means that it allows the water both to infiltrate and to be stored superficially.

One day in 2011, on Radio Tawantinsuyo, Marcelina heard: “Take care of the water, it is going to dry up. Make rustic reservoirs.” Where her qocha is today, there used to be a smaller one “only during rainy season.” They received a visit from an expert from the Program for Adaptation to Climate Change, who inspected it. He told them that they could expand the dam and in this way, boost storage capacity. And he encouraged them to enter the first competition that they were going to organize in the districts of Kurunkanki and Checca. He also explained that they should dig infiltration ditches in the upper part to improve rain collection and plant native trees in the area. In this way, when the trees grow, they would maintain moisture, control erosion and help infiltrate water through their roots.

—As I am old — Bernabe reminds us—, I didn’t know how to do it. His grandson Roger, Brian’s teenage brother, who also brought trout spawn to raise, lent a hand. “He is strong, and works hard.” Together, they cut dozens of champas—chunks of soil compacted with roots—with the chaquitaqlla, an agricultural implement from pre-Incan times, and piled them up to create a two and half meter wide dam that is various meters long.

The qocha of Bernabe and Marcelina competed against reservoirs from seventeen other communities. And it won: first place. It was announced in the plaza de armas of El Descanso; authorities were present. He felt happy but calm. She was happy. They received 450 Nuevos Soles to buy some things for their grandchildren. And they went on with their lives, selling cheese at ten soles a piece and watching how Yanaqocha began to transform the landscape: “This grass was not like this before. Because the qochita is providing moisture, it is this way: growing.”

171 families in the Huacrahuacho watershed participated in two competitions “Ununchista Uywasun” (We raise water).
Benefits of a qocha.

Bernabé Huarca and Marcelina Huillca have just roofed their properties with ichu, which grows strong next to the family qocha.
Protected against water scarcity. Setting up qochas, when combined with other measures, helps ensure that the most vulnerable population has access to water during drought periods.

Better with water. This site is called Moroqocha. Its construction has helped recover a neighboring bog and ensure the return of wild birds.
Water for everyone

In Pucacancha, they agreed to build a reservoir on a spot where they used to play football and graze their alpacas. This decision improved the environment and the lives of his community and neighbors.

In the mountains, scraping the clouds, and is not just for one, but for all. It belongs to 150 families of the peasant community of Pucacancha, although it is found several hundred meters above the population center. This is a communal lake. It is the size of approximately two and half football fields and has the capacity to fit five Olympic pools, but could hold double this amount without risk because it isn’t built in a gorge. Moroccacca is a not just any reservoir: it is at the head of the Huacrahuacho watershed in Cusco at 4.373 meters above sea level. So if we think about it, its water belongs not only to those who live above but also to those who live below.

It was not easy to convince the community to build it, despite the fact that there was already a small qocha on the site. Before this area was flooded, it was a green grass field where villagers took their alpacas to feed and where they used to play football at two in the afternoon after grazing the livestock. It was even less easy to explain to them that, through infiltration, part of the water would end up on the slopes below, far from their land.

—They weren’t too sure about this part about sowing water— says Samuel Huarca, who is 50 years old. He is the president of Pucacancha and a rancher with cows, sheep and alpacas. Samuel participated in the first graduating class of Training Leaders for Climate Change— It wasn’t hard for me to accept the idea. When I was a teenager, my dream was to supply water to my community.

and communal president two years earlier, is also a rancher. Guillermo was just as clear as Samuel on this point: “Now the rain isn’t normal anymore. It comes all at once and we have to deposit it in the lake. And then store it.”

“The initial idea that we had with the qocha was to store water,” explained Flavio Valer, specialist in Local Adaptive Responses from the Climate Change Adaptation Program in Cusco. “Later we proposed something more comprehensive: in addition to building dams and digging infiltration ditches, it was necessary to fence off the land and afforest. This is what they did with the hills that surround Moroccacca. All the villagers from Pucacancha worked to enclosure the 54 hectares with poles and metal mesh. The alpacas would no longer enter to graze. In addition, they planted species of native trees such as queñua, which uses 5% of the water required by a eucalyptus, as well as qolle and qishuar, the sacred tree of the Incas. The landscape has changed inside and outside of the lake. Inside, birds such as the ajjulla or the tagua gigante nest. Outside, about four hundred meters below, water runs where there used to be a wetland. The green color of the grass is telling. Even further below, there is a spring that provides drinking water to five communities. And Guillermo Taparaco wishes: “That by harvesting water, everything is green. And we have more income for our children, so that they don’t end up like us and are better off instead. With this qocha, we are going to plant more grass and maybe we can even use it for crops.”

Eleven communal micro dams have been built in Huacrahuacho. The enclosures have been closed temporarily and afforested with native species. Some of these areas have been declared communal reserves.
Natural pastures

The vast majority of the surface of Mollepamba and Huarazainacocha is covered by natural pastures. Overgrazing and intense rains have eroded and degraded the soil. One effective solution is to temporarily close off community lands to recover grass and seeds and increase water filtration.
MOLLEBAMBA, APURIMAC. It’s eight in the morning. It’s cold because last night, rain fell in the form of snow. Five men arrive at a natural pasture 4,400 meters above sea level. Two are leaders of this community of 280 families. The other three are technical experts from the Climate Change Adaptation Program – PACCPerú. The site is called Qocha Qocha and it is located three hours on foot from the village center.

Walking through a natural pasture in the Mollebamba watershed in Apurimac, or in the Huacrahuacho watershed in Cusco, doesn’t feel strange. It is the predominant landscape—constituting 72% of the first’s area and 87% of the second’s—but the pasture is in poor condition: overgrazing during the last twenty years has degraded the vegetation cover and the rains have eroded the soil. Here, almost all of the livestock production is based on natural grass. As such, it is indispensable to ensure that this resource is used properly. “In a water crisis scenario like the one we are living—from here to 2030, in highlands like these, the supply will fall by a third between July and October—it is important to work hard on the issue of natural pastures,” explains Jaime Perez, advisor on local adaptation responses of PACC in Apurimac. He knows why: “It helps with water infiltration and recharges the aquifers.”

It seems that this is what is happening in Qocha Qocha. Further below we can find Piscapuquío, the only source that irrigates seven agricultural sectors in Mollebamba. For this reason, the experts at PACC proposed to the community a plan to protect this pasture. The proposal was accepted at the
Recovering the pastures in Hatun Ccasa.

Community leaders in Vito (from the left to the right: Nemesio Anamaría, Pío Mendoza, Sózimo Zela and Demetrio Llacta), on the natural pasture where their community installed a mesh fence and afforested.

EDefending the pastures.

Community leaders from Mollebamba round up cows from a neighboring community that have invaded their protected communal pasture land.
The key to success to recovering natural pastures is to develop community agreements about the maximum number of animals allowed per family and respect for protected areas.

The key to success to recovering natural pastures is to develop community agreements about the maximum number of animals allowed per family and respect for protected areas.

The Climate Change Adaptation Program has intervened in five communities in this watershed: Mollebamba, Sikó, Calcauso, Santa Rosa and Vito. In Vito, where 235 families live, the program also made a targeted effort to protect grazing land. It couldn’t be any other way: these families have ten thousand cows, sheep and alpacas. The villagers also know that only good grass produces good cattle.

Hatun Ccasa. This is the name of the place that the community assembly of Vito chose for the enclosure. It has 36 hectares and is close to the highway, a few kilometers from the village center, at 4.200 meters above sea level. Demetrio Llacta, who is 52, was president of the community when the area was fenced in at the end of 2010. Seventy-two members of the community, who were organized into six groups of twelve people each, participated in this communal effort. “It wasn’t easy. The families that live close by have cows and sheep that used to graze there and they weren’t in favor of the effort. But the community had already decided and they had to accept it.” In Vito, unlike in Mollebamba, the objective was less about recharging the aquifers and more about recovering the vegetation, obtaining seeds of natural grass for replanting in eroded areas, and afforesting.

Nemesio Ananata, who is 46, has held all of the positions on the local Conservationist Committee created by Agro Rural, a development program of the Ministry of Agriculture. Between the ages of 6 and 30, Nemesio lived in Lima “in San Juan de Miraflores, in the human settlement El Pacífico, block X, lot 3,” and had returned to Vito with an idea: “Change people’s attitudes. Little by little we are trying to escape the extreme poverty that has always been part of our lives.” This Committee, with the help of PACC, was in charge of planting approximately twenty thousand pine trees and native trees—Chachacoma, Queñua, Qolle—, particularly on the slopes. For example, in Hatun Ccasa.

In the lower part of this area, a transformation has taken place, from a dryme zone —rainfed lands that are farmed in a rotating way— to one under irrigation, by installing a sprinkler irrigation system. “We haven’t used it yet,” says Nemesio, “but we are thinking of using it this year. We are going to produce cultivated grass,” such as white and red clover, Italian ryegrass, alfalfa moapa, or supersonic. Pio Mendoza, who is 53 and currently president of the community, says: “In the next assembly, we are going to approve the use of pressurized irrigation.” And when asked if this community is aware of climate change adaptation, he doesn’t hesitate: “Yes. Today we know that to counteract change, we need to plant and recover the pastures.”
A negative change.

Delays in sowing and harvesting, which are caused by variations in the rainfall pattern, increase the risk that frost will affect crops that have yet to mature.
A different kind of rain. The residents of the Mollebamba watershed have observed that the onset of the rainy season has been delayed from September to December, which affects the agricultural calendar.

Taking care of mesh fences. The former president of the Mollebamba community, Wilfredo Mancilla, and the current secretary, Renzo Delgado, survey the state of the temporary enclosure on the Qocha Qocha pasture.
Hundreds of villagers from the Huacrahuacho and Mollehamba watersheds bet on organic vegetable gardens cultivated with organic fertilizer and protected by trees. Healthy production for a balanced diet. Below, we present three stories of peasant farmers who have said ‘ciao’ to chemicals.

When vegetables are welcome
'GREEN GOLD' TO CHANGE LIVES

If organic vegetable gardens are coupled with agroforestry, the future appears.

ELINDA MANCILLA IS 48 YEARS OLD. Her life has taken a turn or better said, at least three turns. When her husband died and she was left to care for five children (Gisela, the twins Berly and Shirley, Thalia, and little Valentin). When she met Rufo Rea and they decided to build a new family. And when the Climate Change Adaptation Program – PACCPeru arrived in Mollebamba, Apurímac.

One day Belinda and Rufo, who is 50, heard about a competition for peasant farmers. It was called Apu Ritt’i Raymi (Festival of the Sacred Snowcapped Mountain) and its motto was Yakuykiwan Kawsanchis (Thanks to your water, we live). PACC, the civil association Pachamama Raymi, and the Municipality of Juan Espinoza Medrano had organized this type of competition with the idea that community members could learn about new climate conditions and adapt their livelihoods.

—Human beings do not realize that the climate is different— says Belinda—One has to adapt.

“Why did we opt for competitions?”, Víctor Bustíno, deputy coordinator of PACC asks himself, “Because its methodology is to teach by doing. It is learning between equals, peasant farmer to peasant farmer. It provides an extraordinary level of trust. It isn’t the engineer who arrives and intervenes.” The efforts promoted agroforestry—a combination of trees and crops—, the installation of organic vegetable gardens to produce vegetables naturally, organic fertilizer, the good use of water, raising small animals, and improving homes.

It was a success: the four competitions that were organized mobilized more than half the population of the Mollebamba and Huacrahuacho watersheds.

Belinda enrolled the family according to the competition’s rules: “The wife signs up the whole family.” And while they participated, she, Rufo and the children learned many things. They learned that planting bushes around their farm’s perimeter reduces the effect of a frost. That having an organic vegetable garden with carrots, lettuce, white cabbage, chard, onions, radish or beets improves their nutrition. That combining these crops with fruit trees improves yield. That instead of feeding their guinea pigs with corn leaves and broom, it is better to do so with alfalfa. That using organic fertilizer made with recent feces virtually doubles this fodder crop’s harvest. That this production allows them to pay for their children’s education in Lima, Ayacucho and Abancay: “El alfí—this is what they call alfalfa—is ‘green gold’. Why didn’t we plant this before?” And planting pine trees on their drylands will give them wood in the future. They did very well: they won the first place. Belinda received the prize of 400 soles as “household head and representative.”

It is night time and Rufo, Belinda, and her daughter Thalía—who is visiting— have a glass of ulpada, with a bit of mote. They talk about the future. “The children will have income with these plants if they take care of them like we do. When we are old, they will have to recognize the sacrifice we have made,” said the woman. The man nods.
Tula Sanchez’s parcel is small. Barely two hundred square meters. It is located in the village center of Mollebamba, Apurímac on a slope, about two hundred meters above her home.

—I have my little garden; I have everything right here —she says.

There is an organic vegetable garden with white cabbage, cauliflower, lettuce, broccoli, onions and carrots. But there are also potatoes. And corn. And grafted fruit trees, such as the pear, peach and quince tree. And a bush of golden berry or aguaymanto. And five intimpas, the tree of the sun, brought from Abancay. And flowers: carnations, San Jose, and morning glory, like the three she has attached to her hat. And aromatic herbs. And fourteen pine trees that surround everything, protecting it.

—Yes, this is my little corner.

The plot owned by Tula Sanchez, who is 48, also belongs to Cayetano Guerrero, her husband, who is 60, although he works as the education coordinator of the district of Juan Espinoza Medrano and only goes to help in his spare time. When the Climate Change Adaptation Program – PACCPerú began working in this community, Tula and Cayetano were interested: “Hopefully we can change something about the weather.” They rolled up their sleeves. They attended various training sessions with expert peasant farmers. “They taught us how to optimize water” with sprinkler irrigation. They discovered agroforestry: “The more trees we plant around the farm, the less it is affected by the frost.” They were told that chemical products are not used in the organic vegetable garden and that crops should be diversified and rotated. And the soil is improved with organic fertilizer. “Before, we didn’t value vegetables too much. They are very good. More important than meat!”

PACC, along with the civil association Pachamama Raymi, also introduced them to Tula’s passion: raising guinea pigs. Next to their farm plot, there’s an adobe building with a calamine saddle roof. And right next to it, a shed where seventy rodents from the Peru and Inti lines run around in front of an old 25-inch television. And Tula puts so much passion into taking care of these animals, that she sleeps in an adjoining room and not below, in her home. “I love and sleep up here because I have my little animals.” So from the time she rises at five in the morning, she goes back and forth from her farm to the house and vice versa to cook breakfast, lunch or dinner, carry water or see if her children Cecso, 15, or Guadillo, 18, are studying.

—Competitions? Yes. We won a second place two times. With my guinea pigs, my homestead garden, and my fruit.

Although she can’t calculate how much her economy has grown by raising these animals, she is sure that it has helped. For example, this year she has used eight loads of fertilizer prepared with guinea pig manure to sow her plot. Or if her children Brantie or Abel, who live away from home, need money to pay the rent, she knows that she needs to sell, somehow, five or ten guinea pigs. “Before I looked at my husband’s pocket and everything was about buying. Now I want to sell and produce more.”

Every night Tula plans what she will do the next day. She has no doubt: at some point she will visit her farm plot.

Some families have built big hutchs to raise guinea pigs on a larger scale. They guarantee production by growing alfalfa to feed their animals.
It's a family affair. Beatriz Álvarez Rea, Tula Sánchez's mother-in-law, carefully braids her hair. On the next page, her daughter-in-law turns on the sprinkler irrigation system in her vegetable garden. From Vito to Mollebamba. Antonio Anamaría and Efrosina Felícitas, with their daughter Diana. On the next page, Tula Sánchez with one of her guinea pigs.
When you go through the entrance of Antonio Anamaria’s property in Vito, Apurimac, everything seems to be in sync. The water runs rapidly through the canal next to a simple adobe home. Antonio, who is 58, looks happy under his hat, with his white shirt with the number six on the back. He is working in one of the two organic vegetable gardens he owns, the one that is highest up, almost as high as the house’s roof. This is where he plants vegetables. They also plant some trees, on the side that faces the hills, to halt frost and hail. The second vegetable garden, a few meters below, is much smaller and is ready for action: other vegetables wait their turn in the seedling nursery to be transplanted.

Antonio learned about this form of healthy farming through the peasant farmer competitions that were organized by the Program for Adaptation to Climate Change –PACC Peru, with the civil association Pachamama Raymi, and the Municipality of Juan Espinosa Medrano. They promoted these efforts to balance the families’ diets. In the highlands —this farm plot is 3,060 meters above sea level— the diet is low in vitamins and minerals; they consume many cereals and tubers and very few vegetables. “Before, we bought them in the store. But since I started planting them, we don’t buy much.”

His wife, Efrosina Felícitas, who is 46 years old, is sitting on the floor on a sheep skin and is working a backstrap loom. She weaves just how she learned from Gregoria, her sister-in-law, almost twenty-four years ago, when Efrosina was pregnant with her oldest child, Samuel. Now she makes ponchos, llicllas or covers and chumpis, which are the belts that men wear, upon request. And she does this from five in the morning until six in the afternoon, for a day and a half if it is a chumpi or three and a half days if it is a poncho.

Antonio and Efrosina’s property is fertile. In addition to vegetables, it provides broad beans, potatoes, tarwi, corn, and native tubers such as oca, mashua, añu and olluco. The secret is in the organic fertilizer, which is another one of the things they learned. “I make it with stubbles, cow dung and guinea pig dung. And that is where the compost comes from. In three or four months, we will put it on the plants.” If he doesn’t prepare compost, he uses manure from his ten cows. Or worm humus, which takes advantage of these worms’ digestive process. Or bird, which is a liquid fertilizer for leaves that is made with a mixture of feces, water, ashes, sugar, milk or whey, yeast, chicha, chopped alfalfa, and egg shells.

Three of their six children are on the farm plot: Diana, who is 10 years old and braids her mother’s hair carefully, and Agustin, 16, and Paulino, 14, who break up the soil they removed with the chaqtaqlla several months ago to air it out.

“We are working so that our children have a better future. With the little bit that we produce, with the work we do to support ourselves, we are educating them,” says Efrosina. And this is the way it is: Bernabe, 21 years old, studies in Lima, and Agustín, 16, and Paulino, 14, who break up the soil they removed with the chaqtaqlla several months ago to air it out.

Families can produce vegetables to diversify and balance their diets as well as improve their health.
Food security — stable production and access to food, and knowing how to use it — is a fragile concept if the climate takes a wrong turn. Some measures can guarantee food security: cultivating vegetables, even at very high altitudes, and promoting nutritional education, particularly for young children.
Fun in the mountains.

Various girls in the community of Santa Rosa play in front of the vegetable garden with a greenhouse that was installed next to their small school.

Everything for their children.

The women in the community of Kjana Hanansaya go to an early stimulation center that monitors the growth of children under the age of five.
LETTUCE HAS ARRIVED AT SANTA ROSA, which is practically the ‘ceiling’ of Apurímac, a department dotted with peaks and abysses. And they grow next to onions, white cabbage, carrots, broccoli and radishes. And Agustin and Magdalena, and their daughters, Kelly, Myry and Cris, were able to savour a beet for the first time. And they did this 4,600 metres above sea level, where the puna reigns and barely enough natural grass grows for the alpacas. And this was thanks to the vegetable gardens in greenhouses that were set up with the help of the Climate Change Adaptation Program – PACCPerú, along with the Pachamama Raymi civil association and the Municipality of Juan Espinosa Medrano, to ensure that food is permanently available and to promote balanced consumption. That is, for food security.

Santa Rosa is a small community of alpaca farmers, the highest community of the Mollepampa watershed. It is made up of thirty families, who live a nomadic life in search of grazing areas. At the end of 2010, the farmers put together a community development plan with technical assistance from PACC. Additionally, they reflected on the impacts of climate change in their areas. Fifteen families decided to build small gardens to grow vegetables. This would allow them to meet their food and nutritional needs despite extremely low temperatures. These areas would measure twenty-five square meters and would be surrounded by walls of stone covered with sheets of rigid plastic.

—Our ancestors ate what they produced here: meat, a bit of potato, corn and barley — says Agustin Lupa, who is 30 years old. He and his wife, Magdalena Paniura, who is 28, were enthusiastic about this idea.
The greenhouses take advantage of solar radiation to create a greenhouse effect under the roof and elevate the temperature. These greenhouses are useful where extreme climatic events limit crop production in the open air.

The proposal was simple: in the framework of peasant farmer competitions, interested families would have to make four walls; in exchange, PACC would provide wood for the roof structure and polycarbonate for the cover to ensure more durability. The sun’s rays and the greenhouse effect would do the rest.

Agustin and his wife received assistance from Amilcar Aroni, Agustin’s cousin. Together they practiced ayni, an Andean form of work based on reciprocity. It took two weeks to build the walls, and two more days to install the cover.

Three months later, something they never thought would be possible, happened: they had their first harvest of lettuce. Agustin remembers what he said to himself: “With this, I am going to be better off than I would be in the city.” And he felt satisfied: “You consume what you produce, and everything is natural.” They learned to prepare organic fertilizer. They had a lot of manure from 150 alpacas.

In Santa Rosa, there is a vegetable garden with a very special greenhouse. This structure is on the grounds of Education Institution 54283, in the village center and an hour and a half on foot from any family’s cabin. This is where Kelly and Mery study and Edison too. Every Monday morning, they walk until they reach a pump between the mountains, where there are one dozen adobe homes that are usually uninhabited, a medical post, which opens only ten days every month, and a small school painted red and yellow. Inside this school, there is only one room where eight more children sit.

The family economy has improved. “You can buy one head of lettuce for three or four soles. If you produce four or five lettuce, you have already saved twenty soles,” calculates Agustín. “I can’t remember the last time we bought vegetables in Colca.” says Magdalena. On one occasion, Agustín went to this neighboring community to sell vegetables during the dry season. Lettuce from Santa Rosa? Unheard of!

This couple’s example was replicated a few kilometers away on the plots of their cousins and compadres, Amilcar Aroni, who is 30 years old, and his wife Cleofé Huarcaya, 26 years old. “PACC provided guidance: ‘You can build a greenhouse and have vegetables inside. This is good for you and your children.’ And we wanted to do this.” Agustín returned the favor and helped build and roof his vegetable garden.

And the little ones, Edison, who is 7, and Efrain, who is 4, love to eat the carrots so much that they barely let them grow. “Because they are good for eyesight, we eat more.” And the lettuce too, although at first the flavor was foreign to them. And chard, which is fried with egg and flour.

Like other women in the community, Cleofé had to learn to cook vegetables that she was not familiar with, like beets. “I didn’t know how it was done. So I tried. It was like a potato, so I figured it could be prepared like a potato.”

They left off work at the greenhouse when Cleofé was pregnant with her third child. Now, three months after the birth of Max—who Cleofé carries in a wood cradle with a billetera—, everything is already sown in the nursery and prepared for the next season.

In Santa Rosa, the director of the Education Institution provides the cement and the iron, the program supplied the polycarbonate sheets and the solar heater, and the families provided manual labor.

Three years later, the experience is very positive: the vegetables produced accompany the school lunches provided by Qhí Warmas, the National Program to Feed School Age Children, and the greenhouse effect that is produced in the vegetable garden helps to regulate the classroom’s temperature making it less cold. This is also a teaching tool to talk to the children about the environment. “They know what it is and how to take care of it,” explains Cirilo. “They tell their parents that they shouldn’t throw plastic bags just anywhere in the wetlands because alpacas are raised in this area and if the water is contaminated, the animals are contaminated. And we are eating them.”

So that they don’t forget, on one of the classroom’s walls, it says: “Pachamama, manana, mamainca.” We take care of Mother Earth.■
Improving diets. Magdalena Paniura in the kitchen in her house in Santa Rosa. On the next page, monitoring a child’s weight in the early stimulation center in Kjana Hanansaya. From Mollebamba to Huacrahuacho. Mr. Cirilo Cahuana, a school teacher, and his student, Kelly Lupa. On the next page, the Lupa-Paniura family. Below, women and children from Kjana Hanansaya.
Songs for a pregnant woman

Agü gu guawachay
suyasyuski kusiška munasuki
songyeqwan.

Taltayki munasunki
waykkele suyasuki
cúsisca casayku
aga gu guawachay.

I’m expecting you happily / with lots of love / Your daddy loves you / your brothers and sisters are expecting you / we’re happy

On a pampa in the community of Kjana Hanan, Cusco, situated 4,000 meters above sea level, an L-shaped structure is found that is painted blue. Its façade is decorated with murals of children and posters that talk about foods that provide protection, give strength or aid in development. One poster explains the center’s function, “Center of Community Development.” This center, to change the hand reality of the district: four of every ten children under the age of five suffer from chronic malnutrition. “Mothers with children in this age group come here,” explains the center’s coordinator, the nutritionist Evelyn Tuero, “to strengthen their capacities in health, nutrition and early childhood development.” This center is one of fourteen that were launched thanks to a Public Investment Project on food security in conditions of climate change. The project was designed and implemented through a collaborative effort.

Yolanda Labra, who is 27 years old, and her cousin Victoria Mamani, 30 years old, have visited this center with their children since it was built. “for many women. Here, for example, they have learned the right techniques for nursing, how to monitor their children’s growth, and how to balance their diets with quinoa and vegetables. “Before, we cooked only chuño with potatoes; no vegetables or meat were used,” says Victoria. “When we are pregnant, we need to eat well to ensure that our children have the right weight and height,” said Yolanda, “and take vitamins, minerals, carbohydrates, and proteins.”

“I love to hear them talk about proteins and carbohydrates” — says Evelyn. It is also a center for Early Childhood Stimulation, where the children develop abilities through games. “Some were not very sociable and little by little, began to play with others,” explains the coordinator Ana Guisberta Mamani, who is 21, has three children: “I have learned to manufacture toys with cans, bottle tops, and clothes. And Eloí, their father, teaches them about colors, numbers, painting, writing and playing.” And concludes: “They have changed us a lot.”

Jennifer Quispe, who is 30 years old, and her husband, Eloí Apula, 31, live in Pumatalla, Cusco, 3,900 meters above sea level. They also believe in early stimulation and the idea that intelligence is built, it is built from the time that children are in the womb. They have put this into practice with their three children: Elio, 8 years old, Esmith, who is 4, and Jennifer, who is one. “Elio began composing poetry when he was little,” says Eloí. Now, he is “one of the best students in school, one of the class’s poets.” When they can, he and his brother Esmith recite poems to Santa Rosa and get excited about the melodies that he “heard” on the radio for him. And went to see dances. Now Jennifer is a bright child who dances to the melodies that he “heard” and gets excited about the dances that he “saw.”

Twice a month, Jennifer and her children go to the Early Stimulation Center in Pumatalla, where they play with 20 other children. Since they decided that this was too little time, they built a replica of this center in their home. Here, the children jump, sing, dance, throw stuffed animals or the ball and learn from their parents. This is a model family. If one were to choose one from the 260 families in the community that represents the philosophy of adaptation to climate change, this would be the one. They corrected their old one-room house, where everything was a mess, into a harmonious home with independent rooms surrounded by a kitchen, a bedroom, a stimulation room and a storage area. The family added a garden to grow vegetables with which they were barely familiar. They have built five pushers or lakes, which recharge the springs, wet the grass, provide water to cattle and permit irrigation. They closed off grazing areas to facilitate infiltration from the rains and to be able to gather seeds, which they sow in eroded areas. The family grazes their five cows and permit irrigation. Elio is also a kawsaypi, an expert peasant farmer who shares his knowledge with other farmers. He has supervised efforts to build seventy pushers and has participated, alongside one hundred men and women from Cusco and Apurímac, in the Training Program for Leaders in Climate Change. “My dream is to continue raising improved livestock, generate more income and ensure that my children study,” he says. “I want to have a bunch of pushers to have more water. I won’t let the rain go. I have to contain it here so that it stays here.” And knowing his determinations and that of his wife, it will stay.
More water, more forage.

Jenifer Quispe, with little Jemilder on her back, grazes her Brown Swiss cows near her home thanks to the recovery of the pastures.

Elio Ayala walks along one of the five qochas for sowing and harvesting water that he has built on his property in the community of Pumathalla.
New learning.

Jenifer Quispe shares play time with her son Esmith in one of the rooms of her home.

Livestock prize.

Elio, Jenifer and their children Edu, Esmith and Jemilder, with their sheep Carlos and Chanchito, an enormous improved Corriedale that has won fifteen prizes.
No more overcrowding and unsanitary conditions. Guided by this maxim, 425 families in the Huacrahuacho watershed revolutionized their habitat; they said goodbye to smoke with improved stoves and bet on adding more, larger and better rooms to their homes. Here are two exemplary cases of healthy homes.

Some grand houses
RICARDINA’S MOTOR

Many women lead the process to transform old homes into healthier homes

It wasn’t always this way: “It used to be a little hut where everything was together. It was dirty and disorganized. Our situation was sad.” Ricardina remembers that the hamayop peasant farmer experts and trainers during the peasant farmer competitions, encouraged her: “Friend, why can’t you change your home?” And she did it, together with her family, working as a team, and driven by a tremendous capacity for work.

Her optimism and demand for a better world is plastered on every wall. Her strength has been passed on to her children, who don’t complain about the work they do. Her optimism and demand for a better world is plastered on every wall. Her strength has been passed on to her children, who don’t complain about the work they do.

They decide everything at these meetings: for example, to change the sheep—they had seventy, now they have six—for cows—which have gone from five to eleven, improved—and how many cheeses or liters of yogurt they will sell at the market; or if handicraft production—sweaters, chullus, covers, or bags for cellular phones—continues at a good pace.

The harmony felt by Ricardina, who is 34, and her husband Antonio Pucho, who is 35, and their twins Juana and Franklin, both 13, is healthy and exemplary. She has a good reason to be: she lives in Paradise. Not only because of the landscape. Look where you may look, everything is in balance.

The harmony felt by Ricardina, who is 34, and her husband Antonio Pucho, who is 35, and their twins Juana and Franklin, both 13, is healthy and exemplary. She has a good reason to be: she lives in Paradise. Not only because of the landscape. Look where you may look, everything is in balance.

E VERY MORNING, AT THE BREAK OF DAWN in the K’cco sector in Kjana Hanamaya, Cusco, the first thing that Ricardina Mamani sees when she opens her bedroom door is a mountain. It is Huaraconi. It isn’t particularly imposing and it isn’t an apu, so no tributes are paid to it. But she likes it. Every morning, Ricardina Mamani feels happy. She has a good reason to be: she lives in Paradise. Not only because of the landscape. Look where you may look, everything is in balance.

The harmony felt by Ricardina, who is 34, and her husband Antonio Pucho, who is 35, and their twins Juana and Franklin, both 13, is healthy and exemplary. She has a good reason to be: she lives in Paradise. Not only because of the landscape. Look where you may look, everything is in balance.

The harmony felt by Ricardina, who is 34, and her husband Antonio Pucho, who is 35, and their twins Juana and Franklin, both 13, is healthy and exemplary. She has a good reason to be: she lives in Paradise. Not only because of the landscape. Look where you may look, everything is in balance.

The change also brought them two gardens to plant vegetables—that they consume and sell to their neighbors—and medicinal herbs. They also have a storage area where they produce vermicompost as fertilizer. And they have a nursery with tree seedlings of quolle, ceticio, quishuar and pine: “Every year, the plan is to plant one hundred more.”

Here nothing is random. Following the advice of the hamayop, Ricardina and Antonio drew various talking maps on large pieces of paper to get a clear view of the present and to imagine the future. Their vision takes them into 2020, no less. On these maps, which are posted on the walls, one can see their three springs, which are surrounded by rocks to ensure that the cows don’t damage them. The drawings also depict the ditches that they dug to help infiltrate rainwater at the high part of the slope, next to the plot where they crop alfalfa and potato. And just below there are eight wells, or parcels, where their cows rotate to graze, to ensure that they don’t run out of grass. “Before my cows died like this, becoming thinner and thinner, it disappeared. Everything that was drawn has come true.”

If there is a special day for this family, it’s Saturday. This is depicted on another speaking map. At seven at night, the directing council of the Pucho-Mamani family meets: Antonio is the president. His son, Franklin, is the secretary. Ricardina is the treasurer. Her daughters, Juana, is the auditor and supervises activities to make sure that they reach weekly goals.

When we do things well, she doesn’t tell us off. When we haven’t done something, we hear about it—says Franklin.

—I make them pay fines for ten soles —confesses Juana.

—Yes, they decide everything at these meetings: for example, to change the sheep—they had seventy, now they have six—for cows—which have gone from five to eleven, improved—and how many cheeses or liters of yogurt they will sell at the market; or if handicraft production—sweaters, chullus, covers, or bags for cellular phones—continues at a good pace.

Ricardina learned her work ethic from her mother, who widowed and had to take charge of Ricardina and her nine brothers.

Her strength has been passed on to her children, who don’t complain about having to walk four hours every day to and from Education Institution 56125 in El Descanso. Franklin will be a veterinarian—and Juana will still doesn’t know what she will study—guarantee the continuity of this great family enterprise: “My mom makes sacrifices for me and when she is old, it will be my turn. I have to make my best effort.”
A house that is more open.

The room of the youngest ones in the Pucho Mamani family is now an independent, ordered and clean space.

Production that sells.

The new home has a room where Ricardina and her family prepare cheeses and yogurt to sell in nearby markets.
Balanced nutrition. Both homestead gardens, built to produce vegetables, have stone walls that protect plantings from frost and strong winds.

A house with a future. The new healthy home owned by Ricardina Mamani and her husband Antonio Pucho is the axis around which the family has built a sustainable life project.
He stands barely one meter forty. She can hardly see above her cows’ backs. Her traditional outfit from Canas, with a green jacket and black embroidered skirt, isn’t very large. Neither is her montera made of gold-colored strips. And all of this is not because of an insufficient or poorly balanced diet. Of course it isn’t that. She has always drunk a lot of milk, eaten quinoa, huayro potato, olluco, chuno, rice, vegetables, meat, and even fish. The thing is, she is only fourteen years old.

—My name is Deisy Choquehuanca Zárate. She lives in Tacomayo, Cusco, 3,940 meters above sea level, with her father, Benedicto, who is 38 years old, and his second wife, Berta Quispe, who is 36, and her brothers Alexis, who is 3, and Nayeli, who is 2. The Choquehuanca family is special. It is so special that it won first place in the healthy home category at one of the peasant farmer competitions organized by the Climate Change Adaptation Program-PACCPeru, along with the civil association Pachamama Raymi, and the municipalities of Checca and Kunturkanki. And there is no one to guide around the house better than Deisy. For these purposes, she is tall. Immensely so.

An adobe wall surrounds the home. The door is made of green corrugated iron. There is a large square patio with rooms on three of its four sides. To the left, there is a flirtatious kitchen, with drawings on the walls and a cupboard with four ceramic cups and five glasses: “Here is our fire. And the stove is on this side.” It is an improved stove, with a flue for smoke.

To the right, there is a bedroom: “I sleep here with my little brothers.” A piece of blue plastic separates their room from their parents’.

Toward the back and to the left, there is a production room: “This is where we make cheese, yogurt and menjar blanc.”

Toward the back and to the right there is a room for handicrafts, games and a storage area: “Here is where my mother weaves. We rarely buy clothes now. I am learning but don’t know much yet.” And to one side: “Here is the room where my little brothers have fun with their toys.” And over there: “Here is where we store our food. We produce the quinoa up there on the mountain, just like our potatoes. Here below, the frost comes and takes everything.”

On the second floor, there is a living room: “Here my dad does his embroidery. We also watch television here, have fun and rest.”

The exterior walls are painted red and have murals that talk about the environment. There are also various talking maps, which translate the family’s lives into schemes.

One describes how they manage their cattle. After learning from PACCPeru, they began to practice grazing through rotation, just like the other 216 families in the Huacrahuacho watershed. In this way, they protect the fodder oat and the improved grasses that they feed to their fourteen cows. These animals are essential to the family’s economy: their milk is cheese and cheese is money; five soles per piece, if they take it to Checca, El Descanso, or Sicuani. Usually, they sell ten cheeses per week, but last year they sold up to forty. This is depicted on the business plan map.

But the most revealing map is the talking map of the future. On this map, they imagine a stable with a milking room; a mini-plant to process dairy products; a home with solar energy; and areas afforested queñuas. “This is what we think about.”

Deisy is very responsible. Maybe she inherited this from her biological mother, Emperatriz Zárate, who died when Deisy was four years old. “According to my dad, she was one of the community’s presidents.”

Every day Deisy wakes up at four in the morning. She does her chores until six. She helps her other mother, Berta, cook breakfast. At eight, she walks for an hour with Rosa, Maribel and Jesusa, her best friends, to Education Institution 56128. She attends classes for five hours and learns from her teacher, Feliciana Mango, why, for example, the climate has changed—all. Deisy is a member of the school’s ecology club. Deisy leaves school at two in the afternoon, with the exception of Wednesday, when she stays for band practice. Deisy plays the drum. After school, she walks for another hour. Once she’s back, she grates the cattle. Later, she helps make dinner. At seven, she studies. At nine, she shuts her eyes. “I will be a lawyer,” she says. Will I also graze the cattle and take care of the plants? “Maybe not.” “And all of this?” “Maybe my brothers will continue,” she says. “But I will always come back, I will never forget.” “And will you fight for fair causes?” “Yes.” And for a better world? “For my community and my district.”

The families use talking maps to depict how they would like their home to look like, how they see the present and how they imagine the future.
The adaptation competitions that were held among education institutions have generated exemplary cases. In the school of Vito, 48 students and 5 teachers grew vegetables in a vegetable garden, recycled waste, and disseminated their environmental message throughout the community.
A small school in Vito becomes a reference point for education about the effects of climate change.

If you observe the Apu Saywa from the sky, you would say that someone has made an oblique cut in the enormous mountain and has removed a portion. On this impossible slope, which clings to a hillside known as el Calvario, you can find the small community of Vito. The landscape is eroded and only a eucalyptus woodlot stands over the village center. This is Apurimac, in the Moquegua watershed.

Scen from above, only a dozen of more than hundred houses have a traditional roof made of ichu. The rest have corrugated roofs, which are tinged blue by the early morning light. Only three buildings have a different color roof, which is red. One of them, the largest of all the buildings in the area, is on the plaza de Armas. It is Education Institution 54264 in Vito.

—Welcome! —says Carlos Sánchez. He is 35 years old and is one of five professors, along with Mercedes, Fidelia, Modesta and Alzira. He has also been director since 2010.

The bell rings. Forty-eight students rush out of the classrooms, run down the stairs to a patio that is next to the school entrance, and line up. They are in uniform: a checked skirt for the girls, gray pants for the boys. All the children wear a dark blue vest with the school emblem and a light blue shirt.

A boy is singing. Two girls sing. Two children recite a poem: “Oh, environment/We remember you/with love/your children”, says one. Oh nature/ we will not pollute you”, retorts the other. This is not a random poem; it is their way of greeting the team from the Climate Change Adaptation Program.
Program-PACC Peru, which is visiting today.

The Vito school is unusual: it took the first place in the two Pachamamapi sumaq kawsay (Living in Harmony with Mother Earth) competitions (We live happily on Mother Earth), which were organized in 2011 and 2012 with the help of local and education authorities. Twelve education institutions from this watershed in Apurímac participated in these events: five from early years, five from primary school and two from secondary. “We sought to work on the subject of climate change, there where new citizens are being constituted,” says Jaime Pérez, regional coordinator of PACC in Apurímac. “We thought it was necessary to educate them, develop their awareness and prepare them. They are the ones who will suffer the biggest consequences of climate change.”

The environmental awareness of this institution is evident from the time you walk into the building. At the door Apuri Sánchez, who is eight years old, points out two drawings on large papers that are glued to a panel in the shape of a tree. One talks about the school preparation of the nursery: “We brought guano so that it would grow better and we planted seeds of carrots, lettuce, beets, spinach and radishes.” His brother, Cliberth, who is one year older, is the brigadier general of the new institution that is u-shaped, with a central patio and two levels. It is painted maroon and egg yolk yellow, and almost all of the walls have murals that have been done by the children, which carry slogans such as “We are an ecological family” or “We want to live all of life.”

Upstairs, on the second level, is where the star attraction is located: the vegetable garden. Silvano Yacu, who is eleven years old, explains the preparation of the nursery. “We brought guano so that it would grow better and we planted seeds of carrots, lettuce, beets, spinach and radishes.”

This family is committed to the environment. Carlos, the school’s director, along with Alcira, a computer teacher and mother of Apuri and Nieves, who is three years old and in preschool, is from Lambrana, Abancay—; she studied in a school in the community. An expert in Allende Guerrero, who is nine years old, is an expert in rude, Santa María, womwood, and lemon balm. “This herb helps when you have a stomachache or headache. It is good for curing drunkards. You give it to them as mate and they stop drinking.”

The second drawing shows how it is now: pure color. You just need to tour the facility with the children. Leydy Llacta, who is nine, is in charge of showing visitors the flowerpots. “We make them with paint buckets that are no longer useful.” Now they have geraniums, sandia, aloe de nato, and red carnations. “We have painted the flowerpots. Many flowerpots,” says little Araceli Castaneda, who is seven years old. One of the pots says “Respect me.” “They respect the plants that live inside the institution and the ones outside as well. It is part of them; they themselves cultivate them.” Or so says Alcira Zela, who is 30. She is a computer teacher, wife of director Carlos Sánchez and mother of Apurí and Nieves, who is three years old and in primary school. Alcira is from Vito —her husband is from Lambrana, Abancay—; she studied in a school in the community. An enormous cypress remains from the old center.

The new institution is u-shaped, with a central patio and two levels. It is painted maroon and egg yolk yellow, and almost all of the walls have murals that have been done by the children, which carry slogans such as “We are an ecological family” or “We want to live all of life.”

Upstairs, on the second level, is where the star attraction is located: the vegetable garden. Silvano Yacu, who is eleven years old, explains the preparation of the nursery. “We brought guano so that it would grow better and we planted seeds of carrots, lettuce, beets, spinach and radishes.” His brother, Cliberth, who is one year older, is the brigadier general of the environment. He was chosen by his classmates. All the children are responsible for planting and watering. But he has to “respect all the plants and make sure that the other children don’t damage them.” This also goes for the green area in the back of the center. “Here, when we have recess, we lay down and rest,” says John Meneses, who is nine.

Next to this rectangle of grass, there is a garden with medicinal plants. Allende Guerrero, who is nine years old, is an expert in rude, Santa María, womwood, and lemon balm. “This herb helps when you have a stomachache or headache. It is good for curing drunkards. You give it to them as mate and they stop drinking.”

Program-PACC Peru, which is visiting today.

The Vito school won first place in two competitions “Pachamamapi sumaq kawsay (Living in Harmony with Mother Earth),” which were organized with local and education authorities.
Climate Change Adaptation Program

PACCPERÚ
the collar of his shirt is sticking up. This year he turned 12. “When I see my classmates throwing out trash, I tell them not to do it.” It isn’t only about stopping them from throwing it out; it’s about giving new life to waste material. “We have to reuse it, insists Julio. Here they have good ideas about how to do so. He shows two simple examples. One: “We have wrapped this tuna can with paper and we use it to keep our eraser and pencil sharpener.” Two: “We don’t throw out our milk can, which comes from Qali Warma. We line it and use it to store our paints, pencils and rulers.”

In the next classroom, Bruno Llaccta, who is 10 and brother to Brigadier Julio, proposes—in the name of his classmates—that the small plastic bottles be converted into brush holders for dental hygiene. That the large plastic bottles, cut in half, can be used as marker holders. That plastic bottle tops, both small and large, can be used to make an abacus. And a can, which is filled with soil, coupled with a wire, a CD and the upper part of a bottle, can become a decorative flower. In the last classroom, Apuri shows a first aid kit that they made from a cardboard box that had been thrown out; and Allende, who is the guardian of the medicinal herbs, shows how they can write the slogans that decorate the walls—for example, “We take care of our planet”—by gluing eucalyptus or horsetail seeds to the walls.

The positive messages that are developed in this institution are not confined inside the walls. One of the rooms, which is also a lunchroom for teachers, is used as a radio station for Radio Vito. In truth, the station consists of a simple microphone that is attached to two speakers. Every afternoon, some students address not only to their classmates but also to the community’s residents. “I talk about the environment,” says Cliberht, the brigadier general. He tells them: “We shouldn’t contaminate because the climate is becoming stronger. We need to take care of everything that is green.” And Julio, the brigadier of recycling: “We shouldn’t litter, we shouldn’t contaminate.”

Fidelia Sánchez, the teacher, is optimistic. “I see the students that have already left this school and they have a concept of the environment and transmit these habits. They are conscious of nature. Everything that has been done has been fruitful.”

Jaime Pérez, from PACC, says: “All the education institutions have made good progress, but in Vito the teachers have been able to introduce issues relative to environmental education and climate change and have engendered a different attitude among the children.”

Carlos Sánchez, the director, affirms: “In 2010 the children were shy. Now they are not as tense and are free. They are spontaneous. They explain the work they have done in the vegetable garden. And they like it. “Has there been a change? Yes, in their self-esteem.”

The positive messages that are created in this education institution transcend the four walls of the school. Students broadcast information to the community through an on-site radio station.
Technical files
Qocha, System to store surface and sub-surface water

1. DESCRIPTION OF THE PRACTICE
A Qocha is a manmade water deposit or reservoir that takes advantage of natural depression in the land (dolden) or a natural lake to boost the recharge of local aquifers, which feed the springs below. For this purpose, a compacted earthen dam is built to capture and store the rain water that runs off the surface and/or from a nearby spring. The bottom area and the channels that are used for collection and/or derivation purposes, are not made impermeable so that a percentage of the water infiltrates and recharges the aquifers. Some information: a qocha of 3,000 m² can infiltrate 5,000 m³ of water in the 5.5 months that the rainy season lasts, given an infiltration rate of 0.01 m/day (Pumayalli, 2013: 44).

2. PROBLEMATIC THAT THIS PRACTICE SEeks TO ADDRESS AND THE CAusal CHAIN
Water sources diminish, which makes water scarce during the dry season for both agricultural use and human consumption.

3. OBJECTIVES OF THIS MEASURE
- Capture and store rain water on the surface for direct use, to irrigate pastures, and provide water to cattle.
- Infiltrate water and recharge aquifers, improving water regulation services.

4. BENEFITS CONFIRMED BY THE FAMILIes
- Reappearance of or increase in the flow rate of spring waters below.
- Appearance and development of natural grasses and palatable species at the foot of the dam and downstream of the micro dam (recovery of the pasture).
- Possibility of deriving part of the water to irrigate bags and boost the growth of natural pastures.

5. CO BENEFITS
- Moderates the microclimate in its surroundings and generates more moisture, which allows native vegetation associations to grow, improve the vegetation cover and increase the vegetation biomass.
- Helps conserve and extend biodiversity: species of fauna and flora, which grow in lakes and wetlands.
- Improves the landscape.

6. COST (MANUAL LABOR AND/or INPUTS)
PACC’s experience has shown that on average, 8 days of work are needed to build a micro reservoir and water stored by the dam.

7. MAIN REQUIREMENTS
- Adequate soil texture: permeable, connected to the springs below or impermeable in the case that the objective is to store water.
- Family and communal agreements to build on shared lands.
- Availability of materials: rock, clods of soil (sods) and clayey soil.
- Caution with potential risks that may be generated downstream by infiltration and/or water stored by the dam.

8. RECOMMENDATIONS
- Do not build in zones with steep slopes or fast running waters such as gorges or natural water courses.
- Do not store an excessive volume that generates the risk of overflow or a collapse of the dam.
- Avoid using cement or heavy machinery to maintain the original soil characteristics.
- Do not use as a watering hole for animals, which may cause contamination and destroy the soil.

9. COMBINATION/INTERACTION WITH OTHER MEASURES
- Afforestation with native species.
- Enclosure of natural pastures.

10. PERTINENCE OF THE MEASURE WITH REGARD TO THE CLIMATE CHANGE ADAPTATION
In the Huacrahuacho and Mollehumbu watersheds, changes are occurring in precipitation and temperature patterns. In Huacrahuacho, precipitation is following a downward trend while the thermal range increases (the maximum temperatures increase and the minimums decrease). The variation in precipitation patterns and environmental deterioration in this territory are causing water sources to decline, as is the case in other high Andean watersheds. According to climate change scenarios for 2030, this trend will continue upwards. The qochas help rehouse the aquifers and facilitate water storage, which contributes to ensuring that water resources are available year-round. This helps to recover ecosystem services, such as hydrological services, biodiversity, micro climate generation, and strengthening social relations between families and communities.

II. REFERENCES
Rotational Grazing and Temporary Closure of Grazing Areas

1. DESCRIPTION OF THE PRACTICE
 Grazing control and management is fundamental to improving the soil’s capacity to infiltrate rainwater and store water in the subsoil. In a rotational grazing system, cattle is systematically moved from one pasture unit to the other based on a rotation schedule. Cattle rotation depends on the pastures’ intervals of supportability, the livestock demand, the speed with which pastures recover and the seasons of the year (EMA, 1999). It is fundamental to respect family and communal agreements regarding territory use. To divide and protect pasture units, rock walls, wire or mesh lines, or electric fences are used.

2. PROBLEMATIC THAT THIS PRACTICE SEeks TO ADDRESS
 • Overgrazing (roots, reduces infiltration and increases surface run-off).
 • Degradation of the vegetation cover.
 • Water and wind erosion.
 • Loss of agrobiodiversity (palatable species).

3. COST TO IMPLEMENT THE MEASURE (MANUAL LABOR AND OR INPUTS)
 Total: S/. 5,140 nuevos soles per hectare,
 materials: S/. 3,220, manual labor S/. 1,920 per hectare.

4. RECOMMENDATIONS
 1. Ensure that the surface run-off is minimal and the vegetation cover is restored.
 2. Harvest grazing is done in a well-organized manner, allowing for adequate pasture growth and plant development.
 3. Use water management strategies such as implementing water harvesting systems to enhance infiltration and water retention.

5. BENEFITS CONFIRMED BY THE FAMILIES
 • Improved the quality of grass and livestock nutrition.
 • Reduced overgrazing and soil erosion.
 • Enhanced water infiltration and storage in the soil.

6. MAIN REQUIREMENTS
 1. Determine the supportability of the grass (carrying capacity).
 2. Organize a communal committee.
 3. Conduct a census of the livestock.

7. OBJECTIVES OF THIS MEASURE
 • Improve the vegetation cover, reducing erosion processes to increase water infiltration in the soil.
 • Develop and preserve reserve pastures for months when grass is scarce.
 • Strengthen the communal organization to guarantee that the rules are respected and prevent unequal or unjust use of communal resources.

8. COMBINATION/INTERACTION WITH OTHER MEASURES
 • Infiltration ditches.
 • Rustic micro dams.
 • Reforestation (silvopastoral systems).

Agroforestry

1. DESCRIPTION OF THE PRACTICE
 Agroforestry entails the deliberate placement of trees and bushes in an agricultural system to obtain benefits from tree-plant interaction. Agroforestry practices refer primarily to the construction of live fences with species of bushes and trees that are arranged around the plots to protect them from cattle intrusion, strong winds, and brusque temperature variations (MST, 2010). The most common forest species include: queñua, queña, retama, mouty, quinshu, chachacomo, also, chilca, and capsil. Fruit trees can also be used in intermediate zones.

2. PROBLEMATIC THAT THIS PRACTICE SEeks TO ADDRESS
 • Brusque microclimatic changes (frost, wind, direct radiation, etc.) that affects food production, reducing food security of families.
 • Erosion and degradation of soil fertility.
 • Deforestation.

3. OBJECTIVES OF THE MEASURE
 1. Families perceive that the integration of tree species has helped protect crops from strong winds (trees act as a windbreaker).
 2. Produce firewood and other wood-based products, fruit and fodder.
 3. Increase biodiversity (fauna and flora).
 4. Increase crop yields.
 5. Produce firewood and other wood-based products, fruit and fodder.

4. BENEFITS CONFIRMED BY THE FAMILIES
 • Create microclimates, protecting crops against frost and wind and providing shade to small areas for animals.
 • Control erosion.
 • Improve soil fertility.
 • Improve the soil’s water retention.
 • Control erosion.
 • Improve soil fertility.
 • Improve the soil’s water retention.

5. COST (MANUAL LABOR AND/or INPUTS)
 The approximate cost of each seedling is S/. 1.20 nuevos soles.

6. MAIN REQUIREMENTS
 1. Design the parcel and identify the species that will be used and their location.
 2. Acquire seedlings for trees and/or bushes.
 3. Prune and manage pests.

7. RECOMMENDATIONS
 1. Choose the right species, which are appropriate for the Andean highlands.
 2. Ensure that the species and plants are complementary, meaning they do not compete with one another.
 3. Include fruit trees because they provide food.

8. COMBINATION / INTERACTION WITH OTHER MEASURES
 • Qochas.
 • Closed-off pastures.

9. PERTINENCE OF THE MEASURE WITH REGARD TO CLIMATE CHANGE ADAPTATION
 Agroforestry can reduce the vulnerability of production systems in the face of climate variability in the present and the future. The main improvement is the protection that the trees provide against extreme climate events, such as frost and strong winds.
Organic Fertilizers

1. DESCRIPTION OF THE PRACTICE
Organic fertilizer is made with animal dung, vegetable food residuals, residuals of edible mushrooms or other organic and natural sources. Ecological agriculture places great importance on this type of fertilizers given that it reduces the dependence on artificial chemical products for different crops and significantly reduces costs.

2. PROBLEMATIC THAT THIS PRACTICE SEeks TO ADDRESS
Soil fertility reduction for different reasons, such as:
- Insufficient crop rotation.
- Not enough fertilizer is applied on cropped areas, insufficient to replace the harvested matter.
- Lack of awareness of new fertilization techniques that use local inputs.
- Fallow period of parcels is reduced.

3. OBJECTIVE OF THE PRACTICE
The families are fully aware of the need to replace the soil’s organic matter and understand the positive impact that this practice has on crops because:
- It improves food production in terms of quality and quantity.
- Maintains soil moisture.

5. COST (MANUAL LABOR AND/OR INPUTS)
- Biol (40 l): 94 nuevos soles (inputs 64, manual labor 30).
- Compost (100kg): 107 nuevos soles (inputs 32, manual labor 75).
- Hispachisqa (1 ha): 348 nuevos soles (inputs 48, manual labor 30).

6. MAIN REQUIREMENTS
The process to make organic fertilizers requires temperature and moisture control as well as soil aeration. There are different types of organic fertilizers, according to their preparation:
- Manure, which is made from fermented animal dung. It has high levels of nitrogen although its properties vary greatly depending on the animal which produced the dung and the food that it consumes. Manure can be from cows, sheep, guinea pigs, alpacas, or hens.
- Compost, which is obtained from controlled decomposition of organic residuals, particularly from vegetable sources.
- Worm humus is compost that is made through the digestive process of worms. It is clean, odorless humus that is soft to the touch. Its properties are even better than those of domestic compost.
- Biol, which is a foliar fertilizer that is obtained through an anaerobic decomposition of organic wastes; there are various formulas to enrich this product.

7. RECOMMENDATIONS
- It is necessary to conduct careful monitoring of the fertilizer elaboration process; poor management can generate sources of pathogens and contamination.
- Training should not only focus on the production stage; it is important to include methodologies for applying fertilizers to crops.

8. COMBINATION / INTERACTION WITH OTHER MEASURES
- Installation of vegetable gardens.
- Cultivated grass.
- Raising small animals.

9. PERSISTENCY OF THE MEASURE TO CLIMATE CHANGE ADAPTATION
Organic fertilizers improve the soil structure, increasing the capacity of infiltration and water retention, particularly in conditions of higher temperature and higher variability in precipitation. Adequate soil fertilization makes sure the plant’s less sensitive to extreme climate events and to pests, diseases, droughts, frost, hail, or interruption of the normal plant processes and requires timely, sustained and adequate application.

10. REFERENCES
PACC 2014, Explorando respuestas adaptativas a la variabilidad y cambio climático con familias y comunidades altiplánicas de Cusco y Apurímac. Caso de las microcuencas Huarahuashu y Mollebamba.
1. DESCRIPTION OF THE PRACTICE
Climate monitoring entails the systematic reading, registering, data gathering, ordering and analysis of the values of meteorological variables such as precipitation, temperature, wind speed and direction, relative humidity, evapotranspiration, atmospheric pressure and solar radiation. These tasks are performed using instruments at meteorological stations. This monitoring gives inhabitants access to information on local weather conditions in real time and follow its changes.

2. PROBLEMATIC THAT THIS PRACTICE SEeks TO ADDRESS
Inexistence of climate information at the local level, particularly in the Andean highlands.

3. OBJECTIVE OF THE PRACTICE
Have quality information at local level to improve knowledge about variability and climate change and its monitoring.

4. BENEFITS CONFIRMED BY THE FAMILIES
Local meteorological information is available to families and the municipality for decision making purposes.

5. COST (MANUAL LABOR AND/ OR INPUTS)

6. MAIN REQUIREMENTS
1. Define and reach a consensus agreement with local communities and governments regarding the need for and benefits of setting up a meteorological station for local climate monitoring.
2. Sign agreements with local and national institutions for advisory services to install and operate the station.
3. Purchase and install equipment.
4. Train community leaders to read the weather.
5. Registry of weather data.
6. Processing and interpretation of weather data.
7. Commitment of local institutions to ensuring on-going data taking and equipment maintenance.
8. Disseminate weather information through local radio stations.
9. Deliver weather data to pertinent institutions.

7. RECOMMENDATIONS
• The meteorological station should be installed in the correct location and according to technical norms to ensure that the equipment is protected and safeguard the quality of the data.
• Weather data should be registered and read on a permanent basis.
• Weather data should be validated and complement the results of climate researches that have been conducted at the local level with information that was extrapolated from nearby stations.
• Feed local meteorological information into larger climatic information systems and
• Feed Early Warning Systems (SAT) that facilitate response to extreme climatic events.

8. PERTINENCE OF THE MEASURE WITH REGARD TO CLIMATE CHANGE ADAPTATION
It is important to conduct and maintain a systematic registry of the behavior of meteorological variables at the local level, which allows us to: i) generate a solid local information base that facilitates analysis, interpretation, forecasts and in the future, helps generate local scenarios that are useful at the productive and social level, ii) validate and complement the results of climate researches that have been conducted at the local level with information that was extrapolated from nearby stations, iii) feed local meteorological information into larger climatic information systems, and iv) feed Early Warning Systems (SAT) that facilitate response to extreme climatic events.

9. REFERENCES
PACC 2014, Explorando respuestas adaptativas a la variabilidad y cambio climático con familias y comunidades altoandinas de Cusco y Apurímac.
1. DESCRIPTION OF THE PRACTICE
Early Childhood Development is a comprehensive set of systemic and integral interventions in education, nutrition, health as well as emotional and social stimulation for boys and girls between the ages of 0 and 5. The specific activities that were conducted:

- Early stimulation.
- Breast Feeding.
- Monitoring of Growth and Development – PROMOTION.
- 5. Availability of specialized personnel to promote and coordinate ECD.
- 6. Training parents in customized activities to promote ECD.

2. PROBLEMATIC THAT THIS PRACTICE SEeks TO ADDRESS
This activity is meant to address the structural conditions that make boys and girls more vulnerable to the effects of climate change, such as:

- Chronic malnutrition in boys and girls under six months of age due to the early incorporation of water, mate, soft drinks, cow’s milk and solid food during the breastfeeding period.
- Lack of access to services and training to take care of and provide early stimulation to boys and girls under the age of five.
- Strengthen the family and community and public institutions with regard to taking care of and protecting boys and girls under the age of five.

3. OBJECTIVE OF THE ACTIVITY
- Strengthen the capacities for care and protect boys and girls under the age of five to reduce the incidence of chronic malnutrition.
- Promote growth and optimal development that is in line with the chronological age of boys and girls under the age of five.
- Strengthen the family and community and public institutions with regard to taking care of and protecting boys and girls under the age of five.

4. BENEFITS CONFIRMED BY THE FAMILIES
- The families, facilitators, kamaqoq and promoters that work to implement practices, value the fact that children are being cared for and prepared for the future.
- The communities are incorporating practices to monitor growth and development (CREED) and early stimulation with the support of local health promoters.
- Families believe that well nourished children that receive adequate stimulation are protected against illnesses and moreover, develop their intelligence to better take advantage of their studies.

5. CO-BENEFITS
- Improves school performance.
- Strengthen food security of boys and girls under the age of five.

6. COST (MANUAL LABOR AND/OR INPUTS)
Implementation of an early stimulation center: S/. 5,600 nuevos soles.
Implementation of a center for monitoring Growth and Development CRED: S/. 2,000 nuevos soles.
Breast Feeding Campaign S/. 2,500 nuevos soles.
Payments for technical personnel who provide advisory services (per district per year): S/. 45,000 nuevos soles.

7. MAIN PRACTICE
1. Families’ willingness to prioritize the care and protection of boys and girls at home and in the community.
2. Equipping services (staff) for early child care.
3. Availability of specialized personnel to care for and protect boys and girls under the age of five.
4. Training parents in the different components of Early Childhood Development (ECD).
5. Willingness of local public institutions to coordinate and articulate actions.

8. RECOMMENDATIONS
- The practices can be continued at home by implementing an adequate room for the development and control of children.
- It is important to consider the level of education of father and mother, to define the best strategy.
- It requires trained technical staff to accompany the customized activities of parents to promote ECD.

9. COMBINATION WITH OTHER PRACTICES
- Improving housing.
- Family vegetable gardens.

10. PERTINENCE WITH REGARD TO CLIMATE CHANGE ADAPTATION
Climate change affects the different communities of Cusco and Apurímac.

11. REFERENCES
PACC 2014, Explorando respuestas adaptativas a la variabilidad y cambio climático con familias y comunidades altiplánicas de Cusco y Apurímac: Caso de la microcuenca Huacrahuacho y Moluchamba.
Norma Técnica de Salud para el control de las microcuenca Huacrahuacho y Moluchamba.

MINSAN.

MINSAN2011.pdf
OMS: Estrategia mundial para la alimentación del lactante y el niño pequeño.
Vegetable production in homestead gardens

1. DESCRIPTION OF THE PRACTICE
Vegetables are an important source of food for peasant families due to their nutritional value, which is high in vitamins, vegetable proteins and minerals. These elements are indispensable for children’s growth and development, prevent diseases and ensure that the family’s diet is healthy. The main obstacle to vegetable production in the Andes are brusque changes in temperature. One way of reducing these risks is by installing vegetable gardens with a greenhouse (with walls made of adobe or rock and a roof made of agricultural plastic or polycarbonate sheets) to create a favorable artificial microclimate. Other ways include installing vegetable gardens in open fields with rock fences (the absorb heat during the day and release it at night); or live fences (placing bushes around the perimeter as hedges). These vegetable gardens could also be set up on a field area that is 0.50 m deep to create a thermo regulating effect.

2. PROBLEMATIC THAT THIS PRACTICE SEeks TO ADDRESS
- Unbalanced family diet based on carbohydrates and lacking in vitamins and minerals that generate malnutrition and leads to the risk of chronic childhood malnutrition.
- Drastic climate conditions in highland areas make it difficult to produce vegetables.

3. OBJECTIVES OF THIS PRACTICE
- Promote healthy nutritional habits through fresh vegetable consumption.
- Improve health and prevent diseases by consuming vegetables as a source of vitamins, minerals and vegetable proteins.
- Improve vegetable management in family gardens with technology that is innocuous for the environment.
- Have frequent access to vegetables due to their short growing seasons.

4. BENEFITS CONFRIMED BY THE FAMILIES
Families clearly identify the benefits of consuming vegetables in a healthy diet for their children and the family:
- Before, they had to buy vegetables. Others, due to lack of knowledge about their nutritional value or limited funds, did not purchase vegetables.
- Today, they produce vegetables in their gardens.
- A menu that includes fresh and varied vegetables on a daily basis contributes to a balanced diet and as such, helps prevent illness.

5. CO-BENEFITS
- Families make income when they sell the surplus.
- Cost (manual labor and/or inputs) Installing a vegetable garden in open field:
 - S/ 0.705 nuevos soles
- Installing a green house:
 - S/ 1,247 nuevos soles with agricultural plastic and S/ 2,020 nuevos soles with polycarbonate sheets.

6. MAIN REQUIREMENTS
1. Have access to water to continuously irrigate the vegetable garden.
2. If possible, choose a location that is protected from the direct rays of the sun, winds, frost, hail, snow, etc.
3. Prepare the land.
4. Have manual labor on hand to take care of the garden.
5. Have materials for the fence (in the case of vegetable gardens in open fields) and/or materials for the roof (in the case of vegetable gardens with greenhouses).
6. Have the means to buy vegetable seeds.
7. Have the means to control pests and diseases.
8. Use biological means to control pests and diseases to maintain the natural balance of the environment without producing toxicity or totally eliminating the species.
10. Apply staggered sowing of vegetables and combine them with aromatic and/or medicinal plants.

8. RECOMMENDATIONS
- Use biological means to control pests and diseases to maintain the natural balance of the environment without producing toxicity or totally eliminating the species.
- Promote a varied and balanced diet.
- Agroforestry (in some cases, vegetable gardens in open fields are combined with fruit trees and/or bush planting to protect against winds).
- Healthy homes.

9. COMBINATION WITH OTHER PRACTICES
- Production of organic fertilizers.
- Improving the soil’s structure and ability to retain moisture; reduces the crops’ irrigation water demand; and helps the plants’ roots absorb nutrients and water.
- Higher quantities of organic matter strengthen plants and increase crop yields. All of these aspects are important in contexts that experience a lack of water, frosts and hail.

10. PERTINENCE OF THE MEASURE WITH REGARD TO ADAPTATION TO CLIMATE CHANGE
Climate variability has worsened, which has led to crop and livestock losses. Producing vegetables in a way that protects them from climatic extremes is a complementary alternative that allows the families to have a consistent supply of food. Using organic fertilizer to produce vegetables improves the soil’s structure and ability to retain moisture; reduces the crops’ irrigation water demand; and helps the plants’ roots absorb nutrients and water.

11. REFERENCES
- PMCC 2014, Explorando respuestas adaptativas a la variabilidad y cambio climático con familias y comunidades aluvioninas de Cusco y Apurímac. Caso de las microcuenas Huacrahuacho y Mollebamba.
Raising small animals

1. DESCRIPTION OF THE PRACTICE
The measure consists of promoting traditional practices of raising guinea pigs in rural homes, with the aim that the production is mainly used for home consumption.

2. PROBLEMATIC THAT THIS PRACTICE SEeks TO ADDRESS
- Protein deficit, chronic malnutrition and anemia make the families, and boys and girls in particular, more vulnerable to the effects of climate change.

3. OBJECTIVES OF THE ACTIVITY
- Promote the consumption of food products of animal origin that have a high nutritional value.
- Strengthen the revaluation of Andean products in the family diet.
- Contribute to timely prevention of chronic malnutrition in boys and girls under the age of three.

4. BENEFITS CONFIRMED BY THE FAMILIES
- Families clearly identify the benefits of a varied diet.
- The high nutritional value of guinea pig meat is well known.
- Guinea pigs reproduce easily and in less than a year, it is possible to triple production and permanently improve the breed.

5. CO-BENEFITS
- Guinea pig production is more valued at the commercial level (sales) given that it generates income progressively.
- With the sale of surplus guinea pig production, it is possible to make money quickly.

6. COST (MANUAL LABOR AND/OR INPUTS)
The cost of production for home consumption is marginal and limited to the purchase of a reproducer guinea pig(s). This type of small-scale animal raising is customary in peasant families.

7. MAIN REQUIREMENTS
1. The families must have time to take care of, feed and permanently clean the area where guinea pigs live.
2. Have land to grow grass and space in the home to build hutches or pits.
3. Access to and receive training and technical assistance regarding sanitation, procreation, selection and breeding guinea pigs.
4. Use materials from the area to install hutches and/or pits according to technical instructions.
5. Have resources to buy reproducer guinea pigs and preventive medicine to initiate production.

8. RECOMMENDATIONS
- It is important to have access to knowledge about practices for guinea pig raising.
- The installations must be permanently maintained and cleaned.
- Foresee an initial investment to buy reproducers.
- Set aside land nearby to grow fodder grass (to feed the guinea pigs).

9. COMBINATION OF OTHER PRACTICES
- Cultivate grass.
- Sprinkler irrigation.
- Home improvement: differentiated spaces for the guinea pigs.
- Recovery of natural pastures.
- Systems to store surface and sub-surface water for grass production.

10. PERTINENCE OF THE ACTIVITY TO CLIMATE CHANGE ADAPTATION
- Unlike livestock rearing that destroys natural pastures, guinea pig raising represents an environmentally friendly practice given that it is intensive and does not affect vegetation cover.
- Given that agro biodiversity has declined and food production in the rural ambit has fallen due to the impact of climate change, guinea pig raising constitutes a food alternative with a high protein content.
- This allows families to diversify their income so that they are not solely dependent on activities that are highly sensitive to climate variability and change.

11. REFERENCES
PACC 2014, Explorando respuestas adaptativas a la variabilidad y cambio climático con familias y comunidades altoandinas de Cusco y Ayacucho. Caso de las microcuenas Huamachiayu y Mollantamba.
Healthy Homes

1. DESCRIPTION OF THE PRACTICE
The practice related to healthy homes is based on the concept that health is a fundamental human right, which is reflected in a good state of physical, mental and social well-being. Under this perspective, health is quality of life and improving their physical and mental health. As such, the concept of healthy homes entails actions to prevent illness and improve families’ health while increasing the physical security of their homes and improving their emotional health.

2. PROBLEMATIC THAT THIS PRACTICE SEeks TO ADDRESS
• Poor location and positioning of the home in terms of the sun’s direction, filtrations of humidity and wind.
• Inadequate functional distribution of the home means that the families do not live comfortably or safely, which leads to overcrowding (people and animals) and subsequent tension and conflict.
• Humidity in the walls due to rain water and water puddles around the home that weaken the foundation and can lead to overcrowding (people and animals) and subsequent tension and conflict.
• Rapid deterioration of the home due to the use of inadequate materials or errors during building.

3. OBJECTIVE OF THE MEASURE
• Improve functional conditions, sanitation and physical security (against the cold, wind, frost and rains) of homes, protecting the families and children in particular from factors that may affect their health and well-being.
• Strengthen habits relative to order and hygiene in homes.
• Improve the harmony and self-esteem of families and children.

4. SET OF PRACTICES THAT THIS ENTAILS
Practices to improve families’ health:
• Improve stove.
• Maintenance of water taps to ensure that the water consumed is free of dirt and protected against insects and bacteria.
• Order and cleanliness of the home.
• Food storage.
• Installation of latrines and dry toilet.

Practices to improve emotional health (family harmony):
• Organize rooms to receive visitors and separate the bedrooms of children and parents.

5. BENEFITS CONFIRMED BY THE FAMILIES
• Home improvements boost families’ pride and dignity.
• Helps improve family relations.
• Local materials can be used to build and improve homes.
• Efforts involve all members of the family, who decide on the size and location of rooms based on their needs and vision of spatial order.
• Promotes organization and teamwork.
• Improves the families’ health conditions.

6. AVERAGE COST

7. MAIN REQUIREMENTS
• The families must have a space to build a home or a proper home to improve, as well as the need and willingness to improve their home.
• People must receive training for home improvement, hygiene, health, safety and maintaining and conserving the new space.

8. COMBINATIONS / INTERACTION WITH OTHER MEASURES
• Early Childhood Development: more comfort, hygiene and physical security in the home facilitates early stimulation, breast feeding, etc.
• Green house: when this structure is located adjacent to the home, it captures heat to improve the internal temperature of the rooms, which reduces the cold and limits filtration of humidity.
• Family vegetable gardens: the houses’ perimeter fences also protect the vegetable gardens.

9. PERTINENCE OF THE MEASURE WITH REGARD TO CLIMATE CHANGE ADAPTATION
If extreme climatic events intensify, they could put homes in rural areas at risk; this means that physical safety conditions must be improved to ensure that the home’s location, design and structure adequately protect families from these events. Additionally, by improving conditions of thermal isolation in homes, families are better equipped to face rigorous climate conditions. Improving sanitation conditions in homes prevents health risks.

10. REFERENCES
PACC 2014, Explorando respuestas adaptativas a la variabilidad y cambio climático con familias y comunidades altícolas de Cusco y Apurímac. Caso de las microcuencas Huacrahuacho y Mollebamba.
Farmer’s competition

A methodology for rural training, adjusted to foster climate change adaptation in rural ambits

1. DESCRIPTION OF THE PRACTICE

Farmer’s competitions: “Apu Ritt’i Raymi” Yakuakirum Kawanchiis (in Mollebamba, Apurimac) and “Apu Ritt’i Raymi” Unuykiwan Kawanchiis (in Huacrahuacho, Cusco). Methodology to mobilize, train, and provide technical assistance to peasant farmers that facilitates processes to adopt and strengthen good practices that are compatible with adaptation to climate change at the family and communal levels; to foster improvements and/or significant advances.

2. PROBLEMATIC THAT THIS PRACTICE SEeks TO ADDRESS

Lack of training and technical assistance services for peasant farmers that strengthen adaptive response to the climate changes they undergo, which puts at risk their livelihoods.

3. OBJECTIVES OF THE ACTIVITY

Provide training and technical assistance to peasant families and communities to implement good practices for natural resource management, agricultural and livestock production, and the family habitat that explicitly and deliberately include technical and organizational criteria that reduces the negative impact of local climate change and the vulnerability that is directly associated with the same. This entails applying a peer-based training methodology (peasant farmer to peasant farmer), based on own experience and practice (learning by observing and doing). The ultimate objective is to generate tangible improvements in the family farm and the community.

4. DISTINCTIVE FEATURES OF THE COMPETITIONS

The competitions were the means through the implementation of adaptive measures in the Huacrahuacho and Mollebamba watersheds was promoted; an alternative development approach was used based on the Pachamama Raymi peasant farmer training model, characterized by motivation, innovation, peer-based technical assistance and competition. The competitions articulated a set of issues and actions that each peasant family could implement on their family lot. Horizontal inter-learning “peasant to peasant” fostered by kamayoqs, who are local peasant experts. The approach of “learning from the best” facilitated an exchange of knowledge and abilities through apprenticeships, practical courses and visits.

5. NUMBER OF COMPETITIONS HELD

4 cycles of competitions were held at the family and communal levels (2010 - 2012); 3 cycles were facilitated by the Association Pachamama Raymi with which PACC had signed a mutual cooperation agreement (June 2010 to December 2011).

4. Technical assistance and training for families through courses and periodic visits.

5. Peasant farmer juries scored the work of participating families.

6. Award ceremony for the winning families.

5. Peasant farmer juries.

6. STAGES AND ACTIVITIES

The stages and activities of the peasant farmer competition were:

1. Definition of the conditions, specific actions and the competition’s scoring system.

2. Signing up families, after information was disseminated at community assemblies, radio programs and household visits.

3. Training peasant farmer juries.

4. Benchmarks, brainstorming and evaluation of the families’ progress and innovation.

5. Promote alliances with development institutions, including AGRORURAL, which provided complementary support for the competitions.

6. Stages and activities of the peasant farmer competition were:

1. Definition of the conditions, specific actions and the competition’s scoring system.

2. Signing up families, after information was disseminated at community assemblies, radio programs and household visits.

3. Training peasant farmer juries.

4. Technical assistance and training for families through courses and periodic visits.

5. Peasant farmer juries scored the work of participating families.

6. Award ceremony for the winning families.

7. Objectives of the activity

Provide training and technical assistance to peasant families and communities to implement good practices for natural resource management, agricultural and livestock production, and the family habitat that explicitly and deliberately include technical and organizational criteria that reduces the negative impact of local climate change and the vulnerability that is directly associated with the same. This entails applying a peer-based training methodology (peasant farmer to peasant farmer), based on own experience and practice (learning by observing and doing). The ultimate objective is to generate tangible improvements in the family farm and the community.

8. References

PACC 2014, Explorando respuestas adaptativas a la variabilidad y cambio climático con familias y comunidades altas de Cusco y Apurímac. Caso de las microcuenas Huacrahuaco y Mollebamba.
Training program on climate change for men and women community leaders

1. NAME OF THE PRACTICE
Training program on climate change for men and women community leaders

2. OBJECTIVES OF THE ACTIVITY
Strengthening capacities and community leadership to boost the community organization and development planning under climate change conditions, promoting sustainable management of natural resources, food security and reducing risks in their communities, in interaction with local institutions

3. DISTINCTIVE FEATURES OF THE PROGRAM
• The program was designed and implemented by CEPROSI in 2011 and 2012.
• The program was part of the framework for dialogue and inter-cultural relations, which recognizes the complementary nature of knowledge, strengthens self-esteem and values the cultural roots of participating peasant farmers.
• The methodology used was experience-based and communicative; it promoted an exchange of experiences based on Andean knowledge and learning from academic/scientific knowledge.
• The program combined constructivist, environmental and cultural perspectives to strengthen skill, abilities, attitudes, behavior and knowledge. It also contemplated love and respect for Mother Earth.

4. PROGRAM CYCLES
• The training program for men and women community leaders on climate change was implemented in 2 cycles (2001 and 2012).
• 102 community leaders from the watersheds of Huacrahuacho, Cusco and Mollebamba, Apurimac participated (57 in 2001 and 45 in 2012).

5. WHAT TOPICS WERE ADDRESSED?
The program consisted of 5 modules:
1. Module 1 – Climate change.
3. Module 3 – Food security.
5. Module 5 – Community Organization and Management.

6. DEVELOPED THEMES
The steps to develop the program and inter-cultural processes were:
1. Opening the minds and the hearts of the leaders through spiritual experiences to develop awareness.
2. Identification of cosmovisions, perspectives of living side-by-side with nature and the type of “development” to propose.
3. Share information on the issues in the modules and local requirements.
4. Exploration of local and external potential to adapt and a dialogue to share knowledge.
5. Evaluation and recognition of scientific knowledge as enriching to the adaptation process.

7. THE ROLES THAT WERE TAKEN ON BY TRAINED LEADERS
• As Kamayoqs and facilitators in farmer competitions organized by Municipalities and PACC to promote adaptive measures.
• As leaders in their communities.
• Employed as technical staff of local Municipalities and of Special Projects of the regional government of Cusco, like in the case of the Institute of Water and Environmental Management - IMA.

8. REFERENCES
Reports from the Program to Train Community Leaders in the Watersheds of Huacrahuacho and Mollebamba. Published by CEPROSI, 2011 and 2012.
The school encouraging attitudes needed for new times of change

1. DESCRIPTION OF THE PRACTICE
Organization and implementation of Competitions between Education Institutions “Pachamama Sumaq Kaway” in the district of Juan Espinoza Medrano, Apurimac; to strengthen awareness and involve the education community in environmental protection and the promotion of adaptive actions at the family and community level.

2. PROBLEMATIC: WHAT THIS PRACTICE SEeks TO ADDRESS
Weak involvement of schools in environmental issues and the limited interaction between school-community.

3. OBJECTIVES OF THE PRACTICE
Promote the inclusion of educational content about climate change and risk management in the Institutional Educational Plans-PEI and develop school level practices to address these issues in the Education Institutions of the district of Juan Espinoza Medrano, province of Antabamba, Apurimac region.

4. HOW TO IMPLEMENT THE MEASURE
• The competitions’ conditions were agreed upon with the Local Education Management Unit-UGEL in Antabamba.
• The education centers in the watershed were invited and the conditions were disseminated among them.
• Technical assistance and training was provided to teachers, aimed at including contents on climate change and risk reduction in the Institutional Educational Plans and to teach the same in the classroom.

5. BENEFITS AND CO-BENEFITS
• Teachers imparted knowledge and guided school level practices.
• Two cycles of competition were held in 2011-2012, which involved approximately 50 teachers and 400 students at the early years, primary and secondary school levels at 12 education institutions (one of which was Educational Institute of Vito).
• Teachers imparted knowledge and guided school level practices.

6. REFERENCES
PACC 2014, Summary of the Competition between Education Institutions in the district of Juan Espinoza Medrano (not published).
If you walk up the Laramani, that apu who watches over the lands south of Cusco, and if you stand next to the Milphu lake, the one América has known since childhood, you will have an infinite canvas of pastures in front. And maybe, even though far away, you can imagine the terraces that have shaped the Apurimac mountains for many centuries; and the minka of the community members of Mollebamba, who trust this year will not again bring the loss of the harvest of native potato in the laymes, because of an unexpected dry spell; and another minka, of the thirty-two of Vito, who clean the qocha of Imaya during the larqa pichay festival; and the recovered bog, downstream of the Quillihuara lake, where Eleuterio’s horses graze. And you will notice rain clouds in the background, beyond Ricardina’s plot, the community’s visionary; and three Kjana Hanansaya mothers, breastfeeding just like they learned in the Baby Mamonicito Competition which was won by baby Julio Roger, who his mother named after a singer of Espinar. And you’ll see the community members of Quillihuara in their assembly on the 10th of every three months. And at the very end, on the top of the Oqesopa mountain, you will find Silverio, the man who looks at the sky, looking at the sky. And you will look at the sky, and you will think that if the wind comes from the west, and if the clouds are blackish, rain will come.
Caption

1. Oquechamhu, Cusco.
4. Quedru Inayu, Vito, Apurímac.
5. Quillihuara, Cusco.
7. Vito, Apurímac.
8. Kjana Hanamuya, Cusco.
After five years of this program, do you believe that it is possible to adapt to climate change?

I believe that it is possible to manage the risks associated with climate change, which we are already experiencing, and the changes that may occur in the next twenty years in light of the scenarios at hand. It is possible for us to adapt to these conditions in a transforming way. And why do I say transforming? Because it shouldn’t only be about reducing the risks that climate change implies. It should also be seen as an opportunity to improve the population’s living conditions, rethink our development, and add quality to it. Beyond this time horizon, it is difficult to give an answer. Also, we mustn’t forget: all adaptation has limits.

Climate change is currently the largest challenge that humanity faces. It will depend on how it is managed globally: if nothing is done, or little is done to reduce greenhouse gases, the changes may be dramatic.

In your experience, which should be the key elements of this adaptation?

First: it is necessary to have a knowledge base—which can come both from science and local knowledge—to identify the effects of climate change and the problems that it produces and intensifies at the local level. Second: the capacity to generate political and social agreements to take actions directed at reducing the impacts of climate change and the associated vulnerabilities. Third: the means to adapt, access to technology, abilities and resources. And fourth: have the capacity to evaluate the actions that we take, to determine if we have really moderated impacts or reduced vulnerabilities.

Doing all this is not easy: it requires social organization to back these actions; we need institutions with capacities to respond to the technical and social demands that are generated by climate change. Adaptation is not achieved with isolated actions, nor with projects alone; it requires organized and collective action between society and the State.

[Lenkiza Angulo, national coordinator of the Climate Change Adaptation Program-PACC Peru]
PACC was implemented in Cusco and Apurímac. Could the program work in other departments or even in other Andean countries?

It is not PACC’s purpose or mission to reproduce its efforts in other spaces in the country or beyond its borders. At the local level, we have concentrated on promoting experiences that provide answers with regard to what to do and how to deal with climate change in the rural highlands. We have tested methodologies and technologies and have generated learning that has involved peasant farmer families, communities and local institutions. We want to share these experiences to inspire others to expand these actions. The groups that we hope become involved are political decision makers, who can generate the conditions needed to expand actions.

What do you believe the community members have learned about climate change that they didn’t know before?

They now know that the climate changes that they observe in their communities are part of a global phenomenon. And that their local knowledge is valuable in efforts to address these changes and must be strengthened.

And what have you learned from the community members about adaptation?

We have learned that many of the responses we sought, have been explored by the inhabitants of the Andean highlands since a long time, as part of their efforts to manage the climate variability that is naturally present in the Andes. And these responses are also appropriate for dealing with the climate change conditions that are expected in these areas. But we have also learned that many good practices in rural development can become adaptation measures if they are specifically directed at preventing or reducing the impacts of climate change.

What weight does ancestral knowledge have in this relation with the environment?

Ancestral knowledge still guides the relation of inhabitants of the Andes and their natural environment. This knowledge also incorporates and combines new knowledge because it is linked with their daily experiences. These are assets that should be strengthened in their use, along with access to new knowledge and appropriate technologies, which when well combined with Andean knowledge, will put these people in a better position to address the challenges that climate change will imply.

Why is it important to bring this program to the political sphere?

It is very important. Because the impacts and risks that climate change is producing in the rural Andean ambit require massive responses. And these responses can only be facilitated through public policies that promote and provide wide and systematic support to adaptation. These experiences, and others that are underway in our Andes, provide guidelines on the type of actions required, effective and low cost actions which mobilize the capacities of families and communities, and which become more urgent and pressing. But support is needed to take these actions.

The first phase of this program has consisted of implementing a package of measures. And the second?

In the second phase, we seek to contribute to expanding actions that strengthen the resilience and adaptive capacity of the peasant farmer families in the Andean highlands and which generate tangible benefits, through decisions and public actions that can be undertaken by different government actors. To accomplish this, we will provide information, evidence and technical support. Along these lines, we support MINAM in the process to identify, document and validate good practices for facing climate change in rural and urban areas throughout the country, that have potential for upscaling.

We insist that the challenge is to address this issue from a perspective of transformation, given that in contexts of rural poverty and social exclusion, which characterize the territories and populations of the Andean highlands in our country, adaptation to climate change must be linked to efforts to combat poverty and achieve sustainable and inclusive rural development. And it is from this perspective that public decisions should support adaptation to climate change.
Lessons on climate change from the Andes

Ministry of the Environment
Swiss Agency for Development and Cooperation (SDC)
Climate Change Adaptation Program – PACCPeru

Concept, development, graphics and contents: Fábrica de Ideas
Head Editor: Xabier Diaz de Cerio
Texts: Raúl M. Riebenbauer
Editing: Raúl M. Riebenbauer y Mayte Mujica
English Translation: Kathleen Gallagher
Photo: Antonio Escalante
Photo Editing: Antonio Escalante
Graphic Design: Magno Aguilar
Diagramming: Magno Aguilar, Fiorella Rivero

This publication was possible thanks to the contributions of the following local authorities and leaders:

In the Millkichaca Watershed – Apurímac:
Eduardo Cusiencus Mulata. Mayor of the District Municipality of Juan Espinoza Mollina. Antabamba
Willibert Marcella, Raimundo Delgado, Blanca Mansilla and Tula Sanche (Community of Millkichaca)
Agustín Layu and Amilcar Areos and Cirosl Cayanza (Community of Santa Rosa)
Nemesio Anamaría; Pio Mendoza; Demetrio Llacta; Eustes Anamaría. (Community of Vito)
Teachens Carlos Sanchez, Fridol Sanchez and Alice Zolo; and students
Apuri Sanchez, Leidy Llaucta, Silvano Yucra; John Munera and Bruno Llaucta. (Education Institution Vito)

In the Huacrahuacho watershed – Cuzco:
Evelyn Tuero. Coordinator of the Food Security Project in Kunturkanki
Marcelina Huillca and Bernabe Huarca (Community of Hanansaya Ccollana)
Samuel Huacca and Guillermo Taparaco (Community of Pucacancha)
Sebasito Chiquemama, Beni Perring, Osvaldo Quaors and Ello Aika (Community of Pusyatuntu)
Elenora Huaycho (President), Rolando Huarancoro, Eleuterio Huaycho, Brigida Conos and Roger Huaycho (Community of Quillihuara)
Amestegi Tapiac. (Community of Quillihuara)
Ricardo Munasa, Mabel Gurbaina, Victor Munasa, Ana Guadetita Munasa (Community of Kjas Hanansaya)
Deisy Choquehuanca Zarate (Community of Tacomayo)

With the support and technical assistance of:
Lubina Angulo Vilan. National Coordinator of PACC
Victor Bautista Urrutia. Deputy Coordinator
Manuel Galindo Munasa. Head of Knowledge Management and Monitoring
Alex Meri Aparicio. Head of Communications
Florentina Barazorda. Head of Local Adaptive Response Cusco
James Ponce Sulmar. Head of Local Adaptive Response Apurímac
Lisa Cortadella Silva, Regional Head Cusco
Ronal Cervantes Zerpa, Regional Head Apurímac
Bartomeo Domingo. Review of the English version

Editorial:
PACC Peru
Av. Venezuela K-9, Urb. Quiñocancha. Cusco, Peru
Jr. Puno 107, Gobierno Regional de Apurímac. Abancay, Peru
Av. Ricardo Palma 817 Miraflores. Lima, Peru
www.paccperu.org.pe

First edition: December 2014
Run: 500 copies
Legal deposit in the National Library of Peru N° 2014-18019
The Climate Change Adaptation Program -PACC Perú was created to address the problem of climate change in the Andes. Its objective is to increase the capacity of vulnerable rural populations in the Andean highlands of Apurimac and Cusco to adapt to the main challenges of climate change and to reduce the impacts on their livelihoods, through the effective action of public and private actors.

PACC is a bilateral cooperation initiative between the Ministry of the Environment– MINAM and the Swiss Agency for Development and Cooperation – SDC. Its strategic partners are the regional governments of Apurimac and Cusco; the universities San Antonio Abad in Cusco and Micaela Bastidas in Abancay; and FONCODES. PACC is facilitated by a consortium consisting of HELVETAS Swiss Intercooperation, Libélula and PREDES; and receives advisory services from a consortium of Swiss scientific entities, led by the University of Zurich.

One of the main lines of action of the first phase (February 2009 – April 2013) entailed promoting rural adaptive practices at the family and community level. The pilot focused on two watersheds in Cusco and Apurimac, where 1758 peasant families of 21 communities were active participants. The program’s second phase (May 2013 – December 2016) seeks, among other actions, to contribute to expanding the practices that boost the resilience and adaptive capacities of the peasant families in the Andean highlands.