Periodic Physical Disturbance: An Alternative Method for Controlling Insect Infestation During Storage

Tanzania Post-harvest Management Platform (TPMP) Post-harvest Management Conference:

"Reducing post-harvest losses for food security and industrialization"

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederazion svizra

Embassy of Switzerland to Tanzania and Zambia

Swiss Agency for Development and Cooperation SDC

UDSM-Department of Agricultural Economics and Business

Rashid Suleiman (PhD) Kurt Rosentrater (PhD) Bernard Chove (PhD)

Ministry of Agriculture

Outline

- Introduction
- Objective
- Study area & sampling
- Materials and methods
- Results and discussion
- Conclusions

Introduction

Introduction

Maize (corn) is the third most important cereal in the world

Introduction

> One billion People in SSA*

(IITA, 2009)

*Sub-Saharan Africa (SSA)

Introduction

Introduction

 Postharvest losses (PHL) of maize -in SSA are very high - 5- 20% (*APHLIS, 2013)

Introduction

Natural Resources Institute

Introduction

- Tanzania is a major maize producer -E/Africa
- Cultivated area > 4.9 million ha (45%)
- A national average yield 1.0 1.5 t/ha
- Current postharvest losses of maize ≈ *9%

S- African Postharvest Losses Information systems (2016)

Introduction

- It is grown in all regions
- Over 85% by smallholder
 farmers
- It is grown as staple food and cash crop

VALUE-ADDED BIOPROCESSING

LABORATORY

Maize production area in Tanzania (Cochrane & D'Souza, 2015).

Introduction

Maize production in Tanzania (2004-2014)

Introduction

ises of postha puntries

Insects infestation

Poor postharvest handling

Poor storage structures

Introduction

 Most important insect pests of stored products (maize) in SSA

- Sitophilus zeamais (maize weevil)

Prostephanus truncatus
 larger grain borer (Scania)

Introduction

 Chemical insecticides are commonly used to control insect pests of stored products

Introduction

- Synthetic insecticides have resulted numbers of drawbacks
 - Insect resistant

- chemical residues in foodstuff
- health consequences to human & animals

Introduction

Physical control methods

- Alternative methods to prevent & control stored product pests
 - based on the application of some kind of force
 - creates unfavorable conditions to pests
- It includes method like
 - heat, cold, inert gas,

- impact or physical disturbance (Bbosa et al., 2014)

Objective

The objective was to determine the practicability of periodic physical disturbance on *S. zeamais*, the maize weevil mortality by substance farmers in developing countries

Study area & sampling

Materials & methods

The study employed farmer participatory research ap

Materials & methods

- Each farmer was given 12 plastic containers
 - Manyara region $3 \times 12 = 36$
 - Dodoma region 3 x 12 = 36
 - Morogoro region 3 x 12 = 36
 - Total treatments = 108

- Three storage time
 30, 60, & 90 days
- Two treatment
 - turning
 - control
- Three replications

- A10 kg of fresh white dent corn & 0.50 kg of maize infested with S. zeamais
- Initial & final numbers of S. zeamais was determined

 Turning treatments- disturbed twice a day (early in the morning and late in the evening)

- Controls were not disturbed or untouched until the end of storage.
- Percent mortality was calculated by

% Mortality = $\frac{\text{Number of dead insects}}{\text{Total number of insects}} \times 100$

Data were analyzed using SAS (version 9.4)

Results & discussion

The overall percent mortality after 30, 60
 & 90 days of storage were 88%, 96%, & 98%

Results & discussion

• Number of live S. zeamais

Storage time (days)		Control (Stationary)		Turning treatments	
		Dodoma	Manyara	Dodoma	Manyara
30		20 ± 8.33 ^c	12 ± 4.00 ^c	10 ± 2.31ª	3 ± 0.89^{a}
60	ß	68 ± 31.24 ^b	77 ± 44.06 ^b	2 ± 1.39 ^b	0 ± 00^{b}
90		109 ± 22.03 ^a	152 ± 35.73 ^a	0 ± 00^{b}	0 ± 00^{b}

Conclusions

- The study determined the practicability of periodic physical disturbance
- The study shows potential of physical disturbance

feasible & effective
simple, affordable & safe

Can eliminate chemical contamination of maize

thank you!